Kievuz

Экологически чистые нетрадиционные системы технологий энергетики

Содержание

Нетрадиционные и возобновляемые источники энергии (стр. 1 из 6)

Экологически чистые нетрадиционные системы технологий энергетики

РЕФЕРАТ

по дисциплине:

Основы энергосбережения”

Тема: “Возможности использования нетрадиционных и возобновляемых источников энергии”

2009

Введение

Виды нетрадиционных возобновляемых источников энергии и технологии их освоения

Использование возобновляемых источников энергии

Возобновляемые источники энергии в России до 2010 года

Роль нетрадиционных и возобновляемых источников энергии при реформировании электроэнергетического комплекса Свердловской области

Заключение

Список литературы

Введение

При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органического топлива (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов.

Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично.

Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии – нетрадиционных и возобновляемых.

Возобновляемые источники энергии – это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

Невозобновляемые источники энергии – это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников, в отличие от возобновляемых, находится в природе в связанном состоянии и высвобождается в результате целенаправленных действий человека.

В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН (1978 г) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.

Виды нетрадиционных возобновляемых источников энергии и технологии их освоения

Основным видом “бесплатной” неиссякаемой энергии по справедливости считается Солнце. Оно ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг урана (U2351).

Самый простой способ использования энергии Солнца – солнечные коллекторы, в состав которых входит поглотитель (зачерненный металлический, чаще всего алюминиевый лист с трубками, по которым протекает теплоноситель). Коллекторы устанавливаются неподвижно на крышах домов под углом к горизонту, равным широте местности или монтируются в кровлю.

В зависимости от условий инсоляции в коллекторах теплоноситель нагревается на 40-50° больше, чем температура окружающей среды. Такие системы применяются в индивидуальном жилье, практически полностью покрывая потребность населения в горячей воде; в районных отопительных установках, а также для получения технологической тепловой энергии в промышленности.

Солнечные коллекторы производятся во многих городах России, и стоимость их вполне доступна.

Электроэнергия от светового потока может производиться двумя путями: путем прямого преобразования в фотоэлектрических установках, либо за счет нагрева теплоносителя, который производит работу в том или ином термодинамическом цикле.

Прямое фотоэлектрическое преобразование солнечного излучения в электрическую энергию используется на фотоэлектрических или солнечных станциях, работающих параллельно с сетью, а также в составе гибридных установок для автономных систем (“экодомов” и пр.).

Возможно также комбинированное производство электрической и тепловой энергии. В перспективе предполагается, что солнечной энергии будет придаваться большое значение вследствие ее щадящего воздействия на окружающую среду по сравнению с большинством других источников энергии.

Это со временем выльется в относительную экономичность, однако пока удельные капитальные вложения в фотоэлектрические установки превышают традиционные в пять и более раз.

Скорость и направление ветра меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, возникают две проблемы, которые необходимо решить в целях полноценного использования энергии ветра.

Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.

Может быть, одним из решений станет внедрение новой технологии по созданию и использованию искусственных вихревых потоков.

Наиболее распространенным типом ветровых установок (ВЭУ) является турбина крыльчатого типа с горизонтальным валом и числом лопастей от 1 до 3 в фиксированном положении с небольшой регулировкой угла наклона. Турбина, мультипликатор и электрогенератор размещаются в гондоле, установленной на верху мачты.

В последних моделях ВЭУ используются асинхронные генераторы переменной мощности, а задачу кондиционирования вырабатываемой энергии выполняет электроника.

Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения, возможностью соединяться непосредственно с генератором электрического тока без мультипликатора и высоким коэффициентом использования энергии ветра.

Другая популярная разновидность ВЭУ – карусельные ветродвигатели. Они тихоходны, и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при сильном порыве ветра.

Тихоходность выдвигает одно ограничивающее требование – использование многополюсного генератора, работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов неэффективно из-за низкого КПД последних.

Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы.

Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем, “откуда дует ветер”, что весьма существенно для приземных рыскающих потоков.

Экономический потенциал малых и мини-ГЭС составляет примерно 10% от общего экономического потенциала. Но используется этот потенциал менее чем на 1%.

Сейчас начинается процесс восстановления разрушенных и строительства новых малых и мини-ГЭС.

Однако малые ГЭС, построенные путем полного перегораживания русла рек плотинами, обладают всеми недостатками наших гигантов энергетики (ГЭС) и строго говоря, вряд ли могут быть отнесены к экологически чистым видам энергии.

Бесплотинные микро-ГЭС для речек, речушек и даже ручьев существуют уже давно. Бесплотинная ГЭС мощностью в 0,5 КВт. в комплекте с аккумулятором обеспечит энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую.

Роторная установка диаметром 300 мм и весом всего 60 кг выводится на стремнину, притапливается на придонную “лыжу” и тросами закрепляется с двух берегов.

Бесплотинная мини-ГЭС, успешно зарекомендовавшая себя на речках Горного Алтая, доработана до уровня опытного образца.

Волновая энергия. В структуре возобновляемых энергоресурсов весьма перспективным энергоносителем являются океанские волны. Специалисты утверждают, что уже сейчас за счет энергии океанских волн возможно получение электроэнергии производительностью до 10 млрд. кВт.

Это лишь незначительная доля совокупной мощности волн морей и океанов Земли. Вместе с тем она больше мощности всех электростанций, работавших на земле в 1990 г. Наиболее совершенен проект “Кивающая утка”, предложенный конструктором С. Солтером (S.

Salter, Эдинбургский университет, Шотландия).

Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 кВт/ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это – 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 кВт/ч).

Энергию приливов вполне можно “приручить” на приливных ГЭС, которые демонстрируют достаточно хорошие экономические показатели, но ресурс их ограничен – требуются специфические природные условия – узкий вход в бухту и т.п. Совокупная энергия приливов оценивается в 0,09*1015 кВт*час в год.

Геотермальная энергия, строго говоря, не является возобновляемой, поскольку речь идет не об использовании постоянного потока тепла, поступающего из недр к поверхности (в среднем 0,03 Вт/м2), а об использовании тепла, запасенного жидкими или твердыми средами, находящимися на определенных глубинах.

Мировые запасы геотермальной энергии составляют: для получения электроэнергии – 22400 ТВт*ч/год, для прямого использования – более 140 ТДж/год тепла.

Существующие геотермальные электростанции (геоТЭС) представляют собой одноконтурные системы, в которых геотермальный пар непосредственно работает в паровой турбине, или двухконтурные с низкокипящим рабочим телом во втором контуре.

Биомасса представляет собой весьма широкий класс энергоресурсов.

Ее энергетическое использование возможно через сжигание, газификацию (термохимические газогенераторы, перерабатывающие твердые органические отходы в газообразное топливо), пиролиз и биохимическую переработку анаэробного сбраживания жидких отходов с получением спиртов или биогаза. Каждый из этих процессов имеет свою область применения и назначение.

Некоммерческое использование биомассы (проще говоря, сжигание дров) наносит большой ущерб окружающей среде.

Хорошо известны проблемы обезлесевания и опустынивания в Африке, сведения тропических лесов в Южной Америке.

С другой стороны, использование древесины от энергетических плантаций является примером получения энергии от органического сырья с суммарными нулевыми выбросами диоксида углерода.

Источник: https://mirznanii.com/a/322355/netraditsionnye-i-vozobnovlyaemye-istochniki-energii

Основные потребляемые ресурсы и энергосберегающие технологии

Экологически чистые нетрадиционные системы технологий энергетики

23 октября 2013

Сбережение энергии всех видов – эта задача все в большем объеме предстает перед человечеством. Дефицита энергии пока на планете нет, но вот последствия от процесса ее преобразования в электричество и тепло заставляют задуматься.

Смог, озоновые дыры, превышение в атмосфере вредных металлов, зараженные осадки, загрязнение почвы и многое другое, — все это отражается в первую очередь на человеке, на его здоровье, на качестве и продолжительности жизни.

Осознав это, люди начали использовать альтернативные ресурсы и энергосберегающие технологии, которые все шире начинают применяться в быту и в производственном процессе различных сфер экономики.

Энергосберегающие технологии признаны приоритетной задачей на уровне государственной внутренней политики во многих государствах и в России в частности.

И это не простая дань моде, ведь с каждым годом дефицит ресурсов ощущается все больше. Добыча полезных ископаемых оттягивает огромное количество ресурсов – денег, времени, рабочих сил.

И все вместе это крайне отрицательно сказывается на экологии.

Именно поэтому энергию рационально получать из возобновляемых источников и полученные ресурсы расходовать экономно.

Энергосберегающие технологии разрабатываются на основе инновационных решений, они на данный момент являются выполнимыми технически и приносят экономическую выгоду.

Эти технологии также должны быть экологически безопасны и не менять хода жизни общества в целом и привычного склада дел каждого человека в отдельности. Именно так определила понятие экономии энергии ООН.

Особенно большие энергопотери происходят при потреблении энергии, причем 10% теряется при доставке ее потребителю.

Поэтому, если возникла цель экономии энергии, то надо искать моменты ее сбережения именно на объектах потребления – на предприятиях, в цехах, в офисах, в многоэтажных и частных домах и пр.

Средство для достижения такой цели – использование энергосберегающих технологий. Они работают по двум направлениям: совершенствование технологий энергодобычи и методы ресурсосбережения.

Способы экономии энергии на предприятиях

Крупные предприятия тратят очень большое количество ресурсов, в том числе и энергетических. Они становятся значительной частью расходов, минимизируя общую прибыль. В связи с этим многие нанимают специалистов, которые разрабатывают и внедряют следующие технологические меры экономии:

  •   применение в производстве общих технологий энерго и ресурсосбережения, это установка двигателей переменной частоты, использование теплообменников, сжатого воздуха, энергосберегающих ламп освещения, энергии пара и многие другие.
  •   производство энергии с применением эффективных технологий, к примеру, строительство и ввод современных индивидуальных котельных с оборудованием конденсационного типа, совмещающих энергию сгорания газа и энергию водяного пара. Так же эффективны технологии, основанные на тригенерации, которые используют энергию тепла, холода и электричества.
  •   использование альтернативных источников энергии (солнца, воды, ветра, пр.)

Давно доказано, что основные потери происходят в работе оборудования, которое работает большую часть времени с пониженной нагрузкой. К ним относят насосы, вентиляторы охладительные и тепловые, конвейеры различного типа. Для таких производств разработаны специальные приводы с частотной регулировкой.

Они позволяют существенно экономить энергию за счет отключения мощности во время низкой нагрузки. Счета за электричество при их применении снижаются почти на 50%! Кроме того, подключение приводов к общей линии не требует ее перемонтажа или замены двигателя.

Особенно актуальны частотные приводы на предприятиях ЖКХ.

Также огромную экономию при возникновении проблемы работы приборов с пониженной нагрузкой приносят конденсаторные устройства, кроме экономии они еще и приносят значительное количество дополнительной энергии.

Ресурсо- и энергосберегающие технологии активно применяются в строительстве. Реализуются они комплексно, это монтаж энергосберегающей кровли, использование энергосберегающих красок, утепление стен, современные стеклопакеты, высокотехнологичное и экономное отопление и охлаждение.

Отдельным эффективнейшим направлением в энергосберегающих технологиях стала разработка и установка современных котельных, которые обеспечивают высокую экономию потребления топлива, снижают затраты на их обслуживание.

Главный показатель энергосбережения – это КПД работы котла. В конденсационных установках, подключенных в каскад, он реально составляет 110%.

Кроме этого потребители получают ряд бытовых удобств, к примеру, вода от 10 до 60 градусов нагревается в такой установке за 15 секунд. Работают установки на недорогом газовом топливе.

Еще одна экономичная технология – оборудование индивидуальных котельных для многоэтажек, вместо давно морально устаревших центральных тепловых пунктов. Современные котельные работают без вибрации, шума, они компактны.

Вентиляция также стала предметом научных разработок, которые уже широко внедряются в практику. При создании вентиляционных систем применяют эффект рекуперации тепла.

Это повторное использование отработанного воздуха и экономия на снижении мощности во время низкой потребности в тепле, в зависимости от количества работающих в помещении.

При внедрении такой системы начинает эффективно использоваться тепло, вырабатываемое самими людьми, оборудованием и станками, осветительными приборами. При такой организации существенно снижается потребность в прямом тепле, вырабатываемом теплосетями или частной котельной.

В частном строительстве применяются ресурсо и энергосберегающие технологии «жилища нулевой энергии», «пассивных домов». Все эти виды домов относятся к классу энергоэффективных домов, которые обеспечивают зимой тепло, а летом прохладу без систем кондиционирования и отопления. Но не многие рискуют строить дома без коммуникаций, но с успехом используют технологии экономии энергии:

  •   трубы отопления и ГВС должны иметь энергоэффективную изоляцию
  •   установка индивидуальной котельной
  •   установка тепловых насосов, использующие кроме прямых источников энергию тепла земли, теплого воздуха из вытяжки и теплой воды из стока
  •   установка солнечных коллекторов для ГВС и для системы охлаждения
  •   установка в многоквартирных домах индивидуальных счетчиков тепла с возможностью регулирования мощности отопления
  •   установка механической вытяжки с возможностью регулировки вентиляции и вторичного использования тепла вытяжного воздуха
  •   установка контроллеров на каждую квартиру в целях регулировки мощности отопления и вентиляции
  •   монтаж ограждающих здания теплозащитных конструкций с высокими показателями устойчивости тепла
  •   установка устройств, повышающих освещенность помещений, работающих на рассеянной солнечной радиации
  •   использование теплой отработанной воды в других контурах – для теплого пола, для отопления ванных комнат и пр.
  •   разработка и внедрение систем энергосбережения, которые создают особый микроклимат помещений, с помощью математической модели единой энергоэффективной системы.

Инновационные технологии в энергосбережении представлены «умными» осветительными систем, которые автоматически включаются только тогда, когда в комнате находится человек, за счет датчиков на движение и на голос.

Причем активируются датчики только с наступлением сумерек, дальность их действия – 5 метров. В системах используются энергосберегающие лампы, процент экономии у которых достигает 80-ти.

Причем, лампы энергосбережения и системы ограниченного включения можно устанавливать не только в квартире, но и на улице: в приусадебном парке, на парковках и стоянках, подземных переходах и пр.

Прогрессивные технологии разрабатываются и в автомобильной сфере. Инженеры США уже создают преобразователь энергии выхлопных газов в электрическую энергию.

Прибор будет устанавливаться на выхлопную трубу, и вырабатывать энергию для работы кондиционера, музыкальной аппаратуры и пр.

А немецкие ученые работают над созданием гибридного двигателя, который способен работать на нефтепродуктах на автостраде, а в городе – на электричестве.

Методы экономии энергии населением

Если у вас обычная квартира и вы не можете реализовать кардинальные проекты по экономии энергии, то придерживайтесь простых правил, которые нам с детства внушали мамы, но слушать их никто не хотел, утверждая, что на этой земле всего хватит на всех.

Итак, ставьте на маленькую конфорку маленькую кастрюлю, а на большую – с широким дном, и энергия газа будет расходоваться эффективно. Замените лампочки в квартире на энергосберегающие, ведь одинаковый свет дает обычная 100 Вт-ная лампа и энергосберегающая 12 Вт-ная.

Есть разница? Посмотрели телевизор – выдерните вилку из розетки! Это относится ко всем приборам, и дает экономию от 3 до 10%!!! Загружайте в стиральную машину столько белья, сколько максимально указано в инструкции и подбирайте точно режим стирки, это еще 3% экономит.

Если вы регулярно удаляете накипь из чайника и содержите его в чистоте, вы реально экономите еще 3% энергии. Глажка непересушенного белья прибавляет от 3 до 5%, не перегруженный мешок в пылесосе столько же.

Если вы установили холодильник в прохладном месте, то к экономии добавляет очередные 3%. Чистые окна, светлые шторы и обои на стенах, отсутствие огромного количества предметов на подоконниках – гарантирует экономию 5-7% на освещении.

А если не закрывать батареи шторами, то они отдадут на 3% тепла больше.

Посчитайте, сколько всего набежало экономии? Правильно, более 20%! Сколько это в денежном выражении в месяц, вы можете узнать самостоятельно, а если цифру умножить на 12… В год получается неплохая сумма, и делать для этого специально ничего не надо, просто соблюдать эти правила!

Для того, чтобы добиться экономии на освещении разработаны даже рекомендации для населения Министерством энергетики.

Ученые мужи ведомства рекомендуют содержать чистыми светильники и плафоны, это экономит до 20% электричества! Если применять для освещения бра, настольные лампы, торшеры и не включать общее освещение, то можно оставить невредимыми от 30 до 50 % денег, которые вы отдаете на оплату за электричество.

Разделите свою квартиру на зоны, где вам может понадобиться яркое освещение, менее яркое и приглушенное, установите в зонах именно такой мощности лампы, подведите к источникам света отдельную проводку с включателем. Эта даст экономию от 20 до 50%.

Как экономить малому бизнесу

Для индивидуальных предпринимателей также есть рекомендации, которые позволят существенно экономить на ресурсах. Энергосберегающие технологии на предприятии очень похожи на те, которые применяются в жилых домах. Очень выгодно делить производство на небольшие зоны и включать свет, тепло, вентиляцию только на тех участках, где на данный момент идет работа. Это даст экономию до 18%.

Все ресурсы должны учитываться с помощью счетчиков, а не по средним тарифам.

Все лампы необходимо установить энергосберегающие, продается несколько видов таковых, экономия – от 20 до 80% от всей потребленной энергии! Установить пускорегулирующие аппараты, и светотехнические отражатели, это еще плюс 15%. Установка автоматических датчиков движения на освещении даст экономию от 30 до 80% энергии.

Если же вы занимаетесь строительством собственного здания для бизнеса, то дайте задание проектировщикам максимально увеличить площадь окон. Но не забудьте потом оборудовать их современными энергосберегающими стеклопакетами.

Организовывая работы по монтажу отопительной системы, выберите высокоэффективный котел, установите солнечные коллекторы, подсоедините к контурам теплый пол.

Не забывайте, что сейчас можно выбрать экономичные электроплиты, холодильники.

Инновационные технологии в энергосбережении применяются и в условиях уже существующей системы центрального отопления, это автоматический отпуск тепла в здание, пофасадное регулирование отопления, это установка термоотражающих экранов за радиаторами отопления, усиление теплоизоляции труб отопления и ГВС.

И в заключении хочется добавить, что тот, кто ищет, тот всегда находит.

Если ваше внимание привлекли эффективные технологии ресурсосбережения, то вы обязательно найдете компании, которые осуществляют консультирование по энергосбережению, поставляют экономичную технику и производят ее монтаж и установку.

Главное в этом деле – ваше желание сделать свою жизнь чище, правильнее, начать экономить и получать большее количество благ! Всем, кто пошел на этот интереснейший шаг – удачи!

Е.Щугорева

Пример применения энергосберегающих технологий в быту: энергосберегающий дом:

Источник: https://altenergiya.ru/energosberezhenie/energosberegayushhie-texnologii.html

Перспективность развития и применения альтернативных источников энергии

Экологически чистые нетрадиционные системы технологий энергетики

статьи:

Ограниченность природных запасов и возрастающая сложность добычи ископаемого топлива, вкупе с глобальным загрязнением окружающей среды подталкивает человечество прилагать усилия в поиске возобновляемых, альтернативных источников энергии. Вместе с сокращением вреда экологии от новых энергоресурсов ожидают минимальных показателей себестоимости всех циклов транспортировки, переработки и производства.

Являясь целиком возобновляемым ресурсом или явлением, альтернативный источник энергии полностью заменяет собой традиционный, работающий на угле, природном газе или нефти. Различные источники энергии человечество использует давно, но возросшая масштабность их применения наносит невосполнимый урон окружающей среде. Ведет к выбросам в атмосферу большого количества углекислого газа.

Провоцирует парниковый эффект и способствует глобальному повышению температуры, глобальному потеплению. Мечтая о практически неисчерпаемом или полностью возобновляемом энергоресурсе, люди заняты поиском перспективных способов получения, использования и последующей передачи энергии. Конечно, беря во внимание экологический аспект и экономичность новых, нетрадиционных источников.

Актуальность использования нетрадиционных источников энергии будет непрерывно возрастать, требуя ускорения процессов поиска и внедрения. Уже сегодня большинство стран на государственном уровне вынуждены внедрять программы, снижающие расход энергии, тратя на это огромные средства и урезая собственных граждан в правах.

Историю не повернуть вспять. Процессы развития общества не остановить. Жизнь человечества больше немыслима без энергоресурсов. Не обретя полноценной альтернативы современным, стандартным источникам энергии, жизнь социума не представима и гарантировано зайдет в тупик (см. Запасы нефти в мире — на сколько их хватит?)

Факторы, ускоряющие внедрение нетрадиционных энергоресурсов:

  1. Глобальный экологический кризис, построенный на утилитарном и без преувеличения — хищническом отношении к природным богатствам планеты. Факт пагубного влияния общеизвестен и споров не вызывает. Человечество связывает большие надежды в решении разрастающейся проблемы именно на альтернативные источники энергии.

  2. Экономическая выгода, снижающая затраты на получение и конечную стоимость альтернативной энергии. Сокращение сроков окупаемости строительства объектов нетрадиционной энергетики. Высвобождение больших материальных средств и человеческого ресурса, направляемых на благо цивилизации (см.

     Примеры маркетинг-партнерства корпораций ради спасения окружающего мира).

  3. Социальная напряженность в обществе, вызванная снижением качества жизни, ростом плотности и численности населения. Экономической и экологической обстановкой, постоянное ухудшение которых приводят к росту различных заболеваний.

  4. Конечность и постоянно возрастающая сложность добычи ископаемого топлива. Данная тенденция неминуемо потребует ускорить переход на возобновляемые энергоресурсы.
  5. Политический фактор, выводящий в мировые лидеры страну, первой полноценно освоившую альтернативную энергетику.

Только осуществив основное предназначение нетрадиционных источников, можно сполна насытить развивающееся человечество необходимой и жадно потребляемой энергией.

Основной источник обеспечения энергетических потребностей в настоящее время получают из трех видов энергоресурсов: воды, органического топлива и атомного ядра (см. Мирный атом: дорога в никуда или светлое будущее?).

Требуемый временем, процесс перехода на альтернативные виды, движется медленно, но понимание необходимости заставляет большинством стран вести разработки энергосберегающих технологий и активнее внедрять свои и общемировые наработки в жизнь.

С каждым годом все больше возобновляемой энергии человечество получает от солнца, ветра и остальных альтернативных источников. Разберемся, какие есть альтернативные источники энергии.

Солнечная энергия считается ведущим и экологически чистым источником энергии. На сегодня для получения электроэнергии разработаны и используются термодинамический и фотоэлектрический метод. Подтверждается концепция работоспособности и перспективности наноантенн. Солнце, являясь неистощимым источником экологически чистой энергии, вполне может обеспечить потребности человечества.

Интересный факт! На сегодня окупаемость солнечной электростанции на фотоэлементах составляет примерно 4 года.

Давно и успешно используется людьми энергия ветра, ветряков. Ученые разрабатывают новые и совершенствуют имеющиеся ветряные электростанции. Снижая затраты и повышая КПД ветряков.

Особую актуальность они имеют на побережьях и в местностях с постоянными ветрами.

Преобразуя кинетическую энергию воздушных масс в дешевую электрическую энергию, ветряные электростанции уже сегодня вносят существенный вклад в энергосистему отдельных стран.

Геотермальная энергетика

Источники геотермальной энергии используют неисчерпаемый источник — внутреннее тепло Земли. Существует несколько рабочих схем, не меняющих суть процесса.

Природный пар очищают от газов и подают в турбины, вращающие электрогенераторы. Подобные установки работают по всему миру. Геотермальные источники дают электричество, греют целые города и освещают улицы.

Но мощность геотермальной энергетики использована очень мало, а технологии получения имеют низкий КПД.

Интересный факт! В Исландии более 32% электричества добывается с помощью термальных источников.

Приливная и волновая энергетика

Приливная и волновая энергетика — это бурно развивающийся способ преобразования потенциальной энергии движения водяных масс в электрическую энергию. Имея высокий коэффициент преобразования энергии, технология имеет большой потенциал. Правда, может использоваться только на побережьях океанов и морей.

Биомассовая энергетика

Процесс разложения биомассы приводит к выделению газа имеющим в своем составе метан. Очищенным, он используется для выработки электроэнергии, обогрева помещений и других хозяйственных нужд. Существуют небольшие предприятия, полностью обеспечивающие свои энергетические потребности.

Стратегия преобразования лесной промышленности в биолесную индустрию

Постоянный рост тарифов на энергоносители вынуждает владельцев частных домов использовать альтернативные источники. Во многих местах удаленные приусадебные участки и частные хозяйства совершенно лишены возможности, даже теоретического подключения к необходимым энергетическим ресурсам.

Основные источники нетрадиционной энергии, применяемые в частном доме:

  • солнечные батареи и различные конструкции тепловых коллекторов, работающие от солнечной энергии;
  • ветряные электростанции;
  • мини и микро ГЭС;
  • восполняемая энергия из биотоплива;
  • разнообразные виды тепловых насосов, использующих тепло воздуха, земли или воды.

Сегодня, пользуясь нетрадиционными источниками, существенно сократить расходы на энергопотребление не получается. Но постоянно совершенствующиеся технологии и снижение цены на устройства непременно приведут к буму потребительской активности.

Человечество не представляет дальнейшего развития без сохранения темпов потребления энергии. Но движение в данном направлении ведет к гибели окружающей среды и серьезно скажется на жизни людей. Единственным вариантом, способным исправить ситуацию, представляется возможность использования нетрадиционных источников энергии.

Ученые рисуют радужные перспективы, добиваются технологических прорывов в опробованных и инновационных технологиях. Правительство многих стран, понимая выгоды, вкладывает большие средства в исследования. Развивает альтернативную энергетику и переводит производственные мощности на нетрадиционные источники.

На данном этапе развития социума, сохранить планету и обеспечить благополучие людей возможно лишь усиленно работая с альтернативными источниками энергии.

Кроме потенциала и степени развития технологии, на эффективности использования различных альтернативных видов энергии, влияние оказывает интенсивность источника энергии. Поэтому страны, в особенности, не обладающие запасами нефти, усиленно развивают имеющиеся источники нетрадиционных энергоресурсов.

Вырубка лесов как экологическая проблема. Последствия к которым приводит вырубка лесов и пути ее решения

Направление развития восстанавливаемых энергоресурсов в мире:

  • Финляндия, Швеция, Канада, Норвегия — массовое использование солнечных электростанций;
  • Япония — эффективное применение геотермальной энергии;
  • США — существенные успехи в развитии альтернативных источников энергии во всех направлениях;
  • Австралия — хороший экономический эффект от развития нетрадиционной энергетики;
  • Исландия — обогрев геотермальной энергии Рейкьявика;
  • Дания — мировой лидер ветровой энергетики;
  • Китай — удачный опыт по внедрению и расширению сети ветровой энергетики, массовое использование энергии воды и солнца;
  • Португалия — эффективное применение солнечных электростанции.

В гонку технологий включились многие развитые страны, добиваясь на собственной территории весомых успехов. Правда, общемировое производство альтернативной энергии давно топчется вокруг 5% и конечно выглядит удручающе.

Использование нетрадиционных источников энергии в России развито плохо, по сравнению со многими странами находится на низком уровне. Сложившееся положение объясняется обилием и доступностью ископаемых энергоносителей. Однако понимание малой продуктивности данной позиции и взгляд в будущее, обязывает правительство все больше заниматься данной проблемой.

Наметились позитивные тенденции. В Белгородской области успешно работает и планируется к расширению массив солнечных батарей. Планируются работы по внедрению биоэнергетики. В различных регионах запускаются ветряные электростанции. На Камчатке успешно используется энергия геотермальных источников.

Доля нетрадиционных источников энергии в общем энергобалансе страны, оценивается очень приблизительно и составляет около 4%, но имеет теоретически неисчерпаемые возможности развития.

Интересные факты! Калининградская область намерена стать в России лидером добычи чистого электричества.

Альтернативные источники энергии обладают бесспорными и ярко выраженными достоинствами. И просто требуют приложения всех усилий на их изучение.

Плюсы альтернативных источников энергии:

Потребности человечества в бесперебойной энергии диктуют суровые требования к нетрадиционным источникам. И существует реальная возможность устранить недостатки дальнейшим развитием технологий.

Проблема переработки мусора в России. Сбор, утилизация и переработка мусора как бизнес

Существующие минусы альтернативных источников энергии:

  • возможное непостоянство с зависимостью от времени суток и погодных условий;
  • неудовлетворяющий уровень КПД;
  • неразвитость технологии и высокая стоимость;
  • низкая единичная мощность отдельных установок.

Остается надеяться, что попытки поиска идеального, восполняемого источника энергии увенчаются успехом. Экология будет спасена и люди намного улучшат качество жизни.

Источник: https://promdevelop.ru/perspektivnost-razvitiya-i-primeneniya-alternativnyh-istochnikov-energii/

Наиболее перспективные варианты инноваций в энергетике

Экологически чистые нетрадиционные системы технологий энергетики

Инновации в энергетике стимулируют развитие других промышленных областей. Внедрение новых технологий повышает качество жизни человека и помогает снизить затраты, связанные с производством.

Мировые инновации

Развитие энергетики ведётся преимущество в направлении создания технологий, позволяющих снизить негативное воздействие на окружающую среду.

В этой области наиболее перспективными считаются следующие разработки:

  • Осмотические электростанции;
  • Светодиоды;
  • Реакция холодного синтеза;
  • Тепловые насосы.

Новые энергетические технологии не ограничиваются указанными разработками. Японские учёные проводят эксперименты по беспроводной передаче электричества. Также продолжаются поиск и развитие альтернативных (возобновляемых) источников энергии.

Осмотические станции

Эта инновация позволяет использовать практически неисчерпаемые запасы мирового океана для развития энергетики.

Инициатор

На момент написания статьи работала единственная осмотическая станция, созданная компанией Statkraft. Установка размещена на территории норвежского города Тофте.

Суть метода

Суть работы этой инновации заключается в том, что энергия извлекается за счёт смешения солёной и пресной воды. Процесс проходит в одном резервуаре, разделённом полупроницаемой мембраной.

Из-за того, что в резервуаре с пресной водой низкая концентрация соли, происходит обмен жидкостей, благодаря которому достигается равновесие.

В результате этого процесса во втором отсеке увеличивается давление, которое запускает гидротурбину, вырабатывающую электроэнергию.

Низкая эффективность мембран — это основной недостаток осмотических станций. Поэтому большинство разработок касается уменьшения размеров последних. Исследования по созданию мембран нового типа ведут General Electric, Hydranautics и другие крупные компании.

Разработка осмотических станций позволяет внедрять экологически чистые источники электроэнергии на любых территориях, где имеется доступ к воде (а не только на реках). По предварительным расчётам, потенциал этой инновации составляет 1600-1700 ТВт*ч, что соответствует 10% от мирового потребления электричества.

Расходы

Размер инвестиций, потребовавшихся для претворения в жизнь проекта осмотической станции, составил 20 миллионов долларов. При этом на разработку и внедрение инновации ушло около 10 лет.

Светодиоды

Светодиоды обладают множеством преимуществ и выгодно выделяются на фоне других источников освещения:

  1. Энергоэффективность. Светопередача у светодиодов составляет 120-150 люмен/ватт, что является максимальным показателем.
  2. Экологичность. Подобные источники освещения не выделяют вредных веществ.
  3. Продолжительный срок службы. Показатель составляет 50 тысяч часов.

Работу светодиодного освещения можно контролировать с помощью мобильных приложений, изменять цвет испускаемого излучения и вносить другие настройки.

Суть

Из современных инноваций можно выделить следующие:

  1. GaN-светодиоды на подложках из кремния. Технология обеспечивает хорошую светоотдачу, благодаря чему снижаются расходы в энергетике.
  2. LED-освещение на GaN-подложках. Обеспечивает более качественную цветопередачу и улучшает интенсивность светового потока (если сравнивать с предыдущей технологией).
  3. LED SlimStyle. Особенность источников освещения, построенных на базе этой технологии, заключается в наличии множества мелких светодиодов. Стоимость подобных ламп составляет около 10 долларов.

Современные источники освещения работают от постоянного тока. Благодаря этому исключается мерцание света. Однако сейчас ведутся исследования по использованию переменного тока. За счёт этого можно снизить потребляемую мощность. LED-освещение, которое работает с переменным током, разрабатывают компании Lynk Labs и Seoul Semiconductor

Объем инвестиций

Размер инвестиций, которые получила эта сфера энергетики, подсчитать сложно. По мнению аналитиков, в 2018 году объём рынка LED-освещения достигнет 25,9 миллиарда долларов.

Реакция холодного синтеза

Группа итальянских учёных в начале 2010-х годов заявила о создании источника бесплатного тепла, добываемого благодаря реактору E-Cat.



Другие инновации

Среди перспективных инноваций в области энергетики выделяются следующие:

  1. Беспроводная передача электроэнергии. Активными разработками в этой области занимаются японские учёные.
  2. Ветровая и солнечная энергетика. Инновации касаются изобретений, позволяющих снизить расходы на производство электростанций.
  3. Тепловые станции, использующие сжиженные углеводородные газы. Эта инновация успешно прошла множество испытаний и доказала собственную эффективность.
  4. Атмосферная электроэнергетика. Бразильские учёные выяснили, что влажный воздух содержит частицы, обладающие небольшим зарядом. Заряд с помощью металлов можно собирать и вырабатывать электроэнергию. Эта инновация имеет перспективу развития в энергетике стран с влажным климатом.
  5. Магнитомеханический усилитель мощности. Разработчики технологии заявляют, что нашли способ, посредством которого можно использовать магнитное поле Земли для ускорения работы электромотора.

Современная энергетика развивается по разным направлениям. Многие компании продолжают разрабатывать новые технологии, повышающие эффективность светодиодных ламп. А энтузиасты и исследовательские лаборатории предлагают нередко оригинальные решения, которые впоследствии пополняют энергетику различных стран.

Особенности развития энергетики в России

На территории России внедрением энергетических инноваций занимается преимущественно государство либо принадлежащие ему крупные компании.

На территории Алтайского края на протяжении нескольких последних лет открывают новые солнечные электростанции. А Роснано наладила выпуск светодиодов, созданных на базе нанотехнологий.

Также эта компания предлагает для российской энергетики солнечные батареи, которые поглощают большую часть спектра солнца.



Источник: https://viafuture.ru/katalog-idej/innovatsii-v-energetike

Экологически чистые нетрадиционные системы технологий энергетики

Экологически чистые нетрадиционные системы технологий энергетики

Экономически оправданным источником концентрированной энергии является органическое топливо: нефть, газ, уголь. В последнее десятилетие в ряд с тепловой энергетикой стала ядерная. Экологические проблемы этих видов энергетики общеизвестны. Но не только экологические.

Опыт эксплуатации АЭС показал, что сегодня существует важные экономические проблемы, которые в предыдущие годы не учитывали. Обнаружилось, что затраты на поддержание экологических норм загрязнения окружающей среды радионуклидами таковы, что ближайшее будущее атомной энергетики пока что не предвидено.

Это заставило в последние годы вести энергичные поиски альтернативных источников энергии. Сегодня природных экологически чистых источников энергии известно немало.

Основная проблема – это низкое качество (концентрация) всех известных на сегодня альтернативных видов энергии и, соответственно, низкая экономическая эффективность ее конверсии в высококонцентрированную форму.

Рис. 3.5. Ветровой электрогенератор

1 – электрогенератор; 2 – редуктор; 3 – вал; 4 – основа электроблока; 5 – регулятор лопастей; 6 – лопасть; 7 – электрокабель; 8 – контрольный блок.

Анализируя различные возможные альтернативные источники энергии, следует помнить, что во всех без исключения случаях, чтобы эксплуатировать энергоснабжающую технологию, необходимо на обеспечение ее функционирования тоже расходовать энергию соответствующего качества.

Важно подбирать для каждого промышленного объекта наиболее рациональный по концентрации энергии источник, помня, что чем больше концентрация энергии, тем она дороже. Рассмотрим конверсии альтернативных форм энергии, которые сегодня используются в сельском хозяйстве.

Проблема конверсии энергии ветра не такая простая. Прежде всего, возникает вопрос качества ветровой энергии и ее ресурса. Принято считать, что на территории в 1 млн. км2 энергетические ресурсы ветра составляют около 0,5 ГВт.

Но с точки зрения концентрации ее использование для конверсии современной техникой в электрическую невелика. В бывшем СССР эксплуатировалось свыше 200 ветровых электрогенераторов общей мощностью около 1000 кВт.

Одна установка типа АВЭУ-6 (автоматическая ветровая электрическая установка) в состоянии за сутки откачать из скважины глубиной 50м до 20м3 воды или освещать и обогревать строение. Мощность современных ветровых турбоэлектрогенераторов составляет 50…100 кВт (рис. 3.5).

Такие установки довольно широко применяют, например, в Дании, где имеются подходящие климатические условия с постоянными ветрами от 9,5 до 24 м/с.

Безусловно, широкое применение ветровых турбогенераторов в значительной степени позволяет решить проблему снабжения электроэнергией на разных хозяйственных объектах в сельской местности и в быту. В Приазовье сейчас идет монтаж турбоэлектрогенераторов общей суммарной мощностью 50 МВт. Что касается решения проблемы промышленного энергоснабжения, то ставить такие задачи пока не реально.

Солнечные электростанции

Солнечная энергия – это универсальная движущая сила всего живого на нашей планете в ее оптимальном природном понимании. Сегодня человечество стремится увеличить использование солнечной энергии, непосредственно превращая лучевую энергию в тепловую и электрическую, хотя количество ее низкое (концентрация не превышает 1кВт на 1м2 поверхности Земли).

На Украине функционирует экспериментальная солнечная электростанция (СЭС) в Крыму. Принцип ее работы – концентрация солнечной энергии с отражением лучей Солнца с большой площади на меньшую с помощью зеркал. Такая система включает 1600 так называемых гелиостатов, каждый из которых состоит из 45 зеркал общей площадью 25 м2.

Следовательно суммарная площадь зеркал 1600 х 25 = 40000 м2 . Вся система зеркал с помощью автоматики и ПЭВМ наводится на Солнце и отражает его лучи на сравнительно небольшую площадь панели парогенератора, из которого пар (250 оС и 4МПа) направляется в паровую турбину, смонтированную в блоке с электрогенератором.

Мощность такой СЭС –5 МВт, кпд чуть больше 10%, себестоимость электроэнергии значительно выше по сравнению с ТЭС.

Учитывая экологические преимущества СЭС, продолжается проектирование более мощных станций. С 1989 года в США на юге Калифорнии успешно работает промышленная солнечная электростанция мощностью 200 МВт.

Такая электростанция в состоянии обеспечить потребности в электроэнергии 300-тысячного города. Цена 1кВтч электроэнергии этой станции составляет около 10 центов.

Хотя с чисто экономической точки зрения такая солнечная электростанция не может конкурировать с тепловой, она безусловно есть экологически чистой альтернативой современной энергетике.

Геотермальные электростанции

На Украине уделяется значительное внимание геотермальной энергетике, котрая базируется на нетрадиционных возобновляемых источниках энергии, т.е. на тепловых источниках Земли. Ресурсы этого вида энергии составляют на Украине 150 млрд. т условного топлива.

Геотермальная электростанция – это тепловая электростанция, использующая тепловую энергию горячих источников Земли для выработки электроэнергии и теплоснабжения. Температура геотермальных вод может достигать 200ºС и более. В состав геотермальной электростанции входят:

а) буровые скважины, выводящие на поверхность пароводяную смесь или перегретый пар;

б) устройства газовой и химической очистки;

в) электроэнергетическое оборудование;

г) система технического водоснабжения и др.

Геотермальные электростанции дешевы, относительно просты, но получаемый пар имеет низкие параметры, что снижает их экономичность.

Сооружение геотермальных электростанций оправдано там, где термальные воды наиболее близко подходят к поверхности земли. В бывшем СССР первая геотермальная электростанция мощностью 5 МВт была построена на Камчатке, ее мощность была доведена до 11 МВт.

На Украине в настоящее время объединение “Укрэнергоресурсы” заказало предпроектные работы по двум ГеоТЭС – в Крыму и Львовской области.

Проработки ведутся по комбинированной технологии – геотермальная энергия производит предварительный подогрев воды, которая затем при сжигании органического топлива преобразуется в пар.

Кроме того, украинские специалисты пытаются использовать тепло воды в выработанных нефтяных и газовых скважинах (мини ГеоТЭС мощностью 4-5 кВт).

За рубежом – в Италии, Новой Зеландии, США, Японии, Исландии – ГеоТЭС используются главным образом как теплофикационные.

Источник: http://kursak.net/ekologicheski-chistye-netradicionnye-sistemy-texnologij-energetiki/

ovdmitjb

Add comment