Электрическое напряжение
Одна из наиболее часто употребляемых характеристик в электротехнике — это электрическое напряжение, или просто говорят — напряжение.
Очень часто даже у опытных в электротехнике специалистов вызывает затруднение объяснить, что есть это самое напряжение.
Такое явление вполне объяснимо тем, что для практических нужд обслуживания электрооборудования не требуется глубокого понимания сути напряжения, достаточно знаний напряжения в пределах понимания Закона Ома.
Тогда возникает вопрос.
В каком случае и при каких обстоятельствах необходимо глубокое понимание того, в чем суть электрического напряжения? В первую очередь это необходимо для понимания природы (физики) электричества, а также для разработки новых электротехнических устройств и создания новых электротехнических материалов. С другой стороны, углубленное понимание напряжения способствует самопознанию.
Мысленный эксперимент с плоским конденсатором
Для того, чтобы перейти к объяснению сути электрического напряжения требуется понимать, что такое электрическое поле, силовые линии электрического поля и напряженность электрического поля.
Кроме силовых линий в описании поля присутствуют еще и эквипотенциальные линии, а значит есть еще одна характеристика такая как потенциал электрического поля.
Представьте картину равномерно распределенных силовых линий электрического поля, которые пересекают эквипотенциальные линии, причем каждая такая линия будет иметь свое значение потенциала поля.
Для такого представления удобно использовать картину электрического поля плоского конденсатора, который имеет две обкладки и полностью заряжен до некоторого максимального значения.
На таком конденсаторе будет индуцирован электрический заряд, а пространство между обкладками пусть будет наполнено газообразным диэлектриком, например, воздухом. Каждая обкладка конденсатора имеет некоторое количество заряда Q.
Так как обкладки конденсатора выполнены из металла в котором носителем зарядов являются отрицательного типа заряды — электроны, то на одной обкладке будет избыток электронов, а на другой недостаток. Таким образом можно обозначить одну обкладку как +Q, а другую как -Q, и силовые линии электрического поля будут направлены согласно правилам от +Q к -Q. В итоге мы получим картину приведенную на рисунке ниже.
Давайте примем, что размер такого конденсатора больше человеческого роста в несколько раз, пусть обкладки будут представлять собой стены двух больших высоких зданий, которые обклеили металлическими листами сваренными вместе в единый лист.
Вы можете свободно перемещаться внутри такого конденсатора от одной обкладки к другой в любом направлении.
Мысленно можно представить, что там где изображены силовые линии, кто-то закрепил балки из сухого дерева, а на местах эквипотенциальных линий установлены лестницы из того же материала. В итоге вы сможете свободно перемещаться в таком пространстве внутри конденсатора.
Если у вас хватит силы воображения, вы сможете представить такую конструкцию без проблем. Размер может быть любой, но при условии, что протяженность и высота обкладок во много раз больше чем расстояние между обкладками.
Электрическое поле полностью заряженного конденсатора в нашем случае будет статическим, то есть неизменным во времени, его характеристики не меняются с течением времени. Что мы имеем? У нас есть две обкладки обладающие некоторым количеством заряда равной величины, но противоположного знака.
Эти обкладки будут притягиваться к друг другу в соответствии с Законом Кулона, но эта электрическая сила скомпенсирована тем, что обкладки прочно закреплены на стенах воображаемых зданий.
Картина электрического поля такого конденсатора представлена силовыми и эквипотенциальными линиями, которые обозначены материальными предметами такими как деревянные балки и лестницы. Вы можете свободно путешествовать внутри такого конденсатора и выполнять необходимые измерения.
Ни о каком электрическом токе, а тем более о силе тока речи здесь не идет, потому как нет свободных носителей заряда.
Опытный электрик может поинтересоваться, а какое напряжение будет на таком конденсаторе? Это закономерный и справедливый вопрос, но нам следует разобраться что такое это самое напряжение. Тут нам следует вспомнить о пробном заряде, который использовался для объяснения напряженности электрического поля.
Предположим, что такой заряд появился и он может свободно перемещаться в пространстве между обкладками конденсатора. Что же это может быть? Представьте, что вы являетесь тем самым пробным зарядом и испытываете на себе дальнодействие электрических сил.
Разумеется, в реальной жизни такое маловероятно, но в нашем мысленном эксперименте такое вполне допустимо.
Физическая работа пробного заряда в электрическом поле
Итак, вы превратились в пробный электрический зарядq во много раз меньший чем заряд Q на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил.
Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки +Q, и вас будет отталкивать от обкладки с зарядом -Q.
Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.
Предположим, что вы вошли в конденсатор со стороны обкладки -Q и вас тут же начало отталкивать от нее в сторону обкладки +Q. Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением.
Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки +Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром.
В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точки A к точке B (смотрите рисунок выше). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому.
В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть +q, тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на -1.
На вас действовала сила и вы переместились из точки A в точку B, другими словами вы двигались от потенциалаφa (большего) к потенциалуφb (меньшему).
Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние.
Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении.
Проделав обратный путь из точки B в точку A, вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.
Разность этих двух потенциалов φa и φb и будет являться электрическим напряжением.
Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение.
При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).
Разность потенциалов Δφ=φ1-φ2 всегда показывает какую работу A может совершить носитель заряда q при перемещении этого заряда из точки с одним потенциалом φ1 в точку с другим потенциалом φ2. При вычислении надо иметь в виду, что потенциалы могут быть как со знаком плюс, так и со знаком минус.
Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работа А будет со знаком (+). Таким образом электрическое напряжение — это энергетическая характеристика электрического поля и представляет собой разность потенциалов Δφ. Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение – это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.
Необходимо совершенно ясно представлять в чем заключаются различия между такими понятиями как: напряженность электрического поля E, потенциал φ, и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.
Единицы измерения электрического напряжения
Точно также как и потенциал электрического поля, электрическое напряжение измеряется в Вольтах и часто обозначается либо символом U, либо символом V.
Чему равен 1 Вольт? Он равен работе в 1 Джоуль, которую совершает заряд в 1 Кулон.
Таким образом, если разность потенциалов равна скажем 12 Вольт, и эту разность (эквипотенциальные линии и поверхности) преодолел заряд, допустим в 2 Кулона, то следует говорить, что была совершена работа 24 Джоуля (12 Вольт умноженные на 2 Кулона).
Когда в электрических цепях существует электрический ток, то происходит движение носителей зарядов вдоль силовых линий электрического поля (направление зависит от знака), источником которого может быть электрогенератор или химический аккумулятор, то на участках цепи происходит падение напряжения (потенциала) и выделяется энергия. В источнике тока происходит обратное, там затрачивается энергия (или была затрачена) на создание ЭДС.
Дата: 01.05.2015
© Valentin Grigoryev (Валентин Григорьев)
Источник: http://electricity-automation.com/page/elektricheskoye-napryazheniye
III. Основы электродинамики
Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.
Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.
Потенциал
Система “заряд – электростатическое поле” или “заряд – заряд” обладает потенциальной энергией, подобно тому, как система “гравитационное поле – тело” обладает потенциальной энергией.
Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал – это характеристика электростатического поля.
Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.
Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.
В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело – наоборот.
Потенциальная энергия поля – это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.
Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.
Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.
Разность потенциалов
Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов
Эту формулу можно представить в ином виде
Эквипотенциальная поверхность (линия) – поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.
Напряжение
Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.
Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.
От величины напряжения зависит ток в цепи и энергия заряженной частицы.
Принцип суперпозиции
Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности
Как определить знак потенциала
При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.
На рисунке изображены линии напряженности. В какой точке поля потенциал больше?
Верный ответ – точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.
Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком “минус”. Чем дальше от отрицательного заряда, тем потенциал поля больше.
Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак “+”, работа имеет знак “-“.
Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.
Зависимость напряженности и потенциала от расстояния
Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен
Напряжение в природе
Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В. Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.
Энергия взаимодействия зарядов*
Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1
Аналогично Тогда энергия взаимодействия двух точечных зарядов
Энергия взаимодействия n зарядов
Источник: http://fizmat.by/kursy/jelektrichestvo/potencial
Электрический потенциал
Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.
Физический смысл электрического поля
Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.
Главные достижения по изучению электричества случились бы минимум на 20 лет раньше, нежели в действительности.
До Эрстеда влияние провода с током на магнитную стрелку отмечал Джованни Доменико Романьози в 1802 году.
Это подтверждённые официальными изданиями данные, а собственно событие, возможно, произошло раньше. Заслуга Эрстеда лишь в заострении внимания общественности на замеченном факте.
Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы.
Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие.
Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы.
К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание. Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.
Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите — попробуйте нарисовать в воображении электромагнитную волну:
- Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
- Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
- На вид это две перпендикулярные волны… стоп! Что такое волна?
Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее.
Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр.
Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.
Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека.
К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов.
В первую очередь — болезни крови. Небезопасна для людей и сетевая частота 50 Гц.
Характеристики электрического поля
Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле.
К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов.
Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.
Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.
Первая картина электрического поля
В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества.
Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами.
Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.
Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда… Главными характеристиками электрического поля считаются:
- Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
- Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
- Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.
Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.
Нулевой потенциал и потенциальное поле
Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал — универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.
Зарисовка напряжённости поля
В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль.
В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты.
При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.
На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным.
Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль.
Это становится возможным в трёхфазных цепях.
На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное.
Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения.
Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.
В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками.
Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления.
Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.
Однако цепи с изолированной нейтралью используются и в целях безопасности.
Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт — разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике.
Падение потенциала во внешней электрической цепи
Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.
На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности.
Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.
Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление.
Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!).
Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.
Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:
- На защитном проводнике всегда потенциал грунта — нуль.
- На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.
Система TN-C-S
Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.
Источник: https://VashTehnik.ru/enciklopediya/elektricheskij-potencial.html
Электрическое напряжение и потенциал
А В
В поле заряда Qпоместим пробный заряд q.Под действием электрического поля Q,qначнет двигаться от точки А добесконечности, значит электрическоеполе совершает работу, то есть обладаетэнергией. Энергетическими характеристикамиполя является потенциал и напряжение.
Электрическиепотенциал – это работа совершаемаясилами поля по перемещению единичногозаряда из одной точки поля в бесконечность.
φ-потенциал измеряется в вольтах (В)
Запишем потенциалточек А и В ;.
Электрическоенапряжение-это работа, совершаемая силами поля поперемещению единичного заряда из однойточки поля в другую.
[U]=В ;напряжение междудвумя точками есть разность потенциаловэтих точек
Потенциал Землиравен 0.
Электрический ток
Электрическийток – этонаправленное движение зарядов поддействием электрического поля.
Чтобы ток шел нужноиметь замкнутую цепь, состоящую изисточника и приемника электрическойэнергии и соединительных проводов. Занаправление тока принимаем направлениедвижение положительного заряда. Поэтомуво внешней цепи ток направлен от зажима«+» к зажиму «-», а внутри источниканаоборот.
[I]=A1 мА=10-3А
1мкА=10-6А
Сила тока –количествоэлектричества, проходящего черезпоперечное сечение проводника за 1с.
;;Ток равен скорости изменения зарядасимволпроизводной.
При прохождениитока проводник нагревается и совершаетсяработа.
; [А]= Дж
[Р]= Вт – мощность- это работа в единицу времени.1 мВт =10-3Вт
1 мкВт =10-6Вт
1 кВт =103Вт
Тестовые задания:
Задание |
Варианты ответов |
1.Является ли электрический потенциал энергетической характеристикой электрического поля? |
Да; Нет. |
Понятие об источниках
Источник- этоустройство,которое выдает в цепь электрическуюэнергию.
Различают источникинапряжения и источники тока.
Источник напряжения– это источник, ЭДС которого не зависитот сопротивления нагрузки.
Е-ЭДС;
Ri-внутреннеесопротивление источника.
Схемное изображение
источника напряжения
Источник тока-это источник,ток которого не зависит от сопротивлениянагрузки.
-ток источника тока
Схемное изображение
источника тока
Источниками токаявляются электронные лампы, транзисторы.Чтобы получить источник тока на практикенадо к источнику напряжения подключитьочень большое внутреннее сопротивление.
При расчетахвозникает необходимость преобразоватьисточник тока в источник напряжений инаоборот.
Рис. Схема систочником напряжения
Чтобы получитьсхему с эквивалентным источником токанадо ток источника тока рассчитать поформуле: и внутреннее сопротивление источниканапряжения, включенного последовательно,включить к источнику тока параллельно.
Рис. Эквивалентнаясхема с источником тока.
Параметры электрических сигналов
Сигналы бываютпериодическими и непериодическими.Периодические повторяются черезопределенные промежутки времени.Непериодические возникают один раз ибольше не повторяются.
1 Мгновеннымназывается значение сигнала в любоймомент времени u,i,e;
2 Максимальныминазывается наибольшее из мгновенныхзначений Um,Im,Em;
3 Размах-это разность между максимальным иминимальным значением сигнала Up,Ip,Ep,
4 Период– это наименьший промежуток времени.через который, значение переменнойповторяется [T]=с;
5 Циклическаячастота -это количество колебаний переменнойза 1 с.
[f]=Гц1кГц=103Гц
1МГц=106Гц
Сигналы различнойформы
1 Сигнал неизменяющийся во времени – это постоянноенапряжение или ток.
2 Сигнал гармоническойформы изменяется по закону sinили cos
3 Сигнал треугольнойформы.
4 Сигнал пилообразнойформы.
5 Сигнал прямоугольнойформы (биполярный импульс)
6 Однополярныйимпульс
tu-длительность импульса
скважность-отношение периода к длительностиимпульса
7 Сигнал на выходеоднополупериодного выпрямителя
8 Сигнал на выходедвухполупериодного выпрямителя
Тестовые задания:
Задание |
Варианты ответов |
|
1Является ли скважность понятием, которое характеризует гармонический сигнал? |
Да; Нет. |
|
2 Укажите какой отрезок на временной диаграмме соответствует размаху сигнала? |
||
Задание |
Виды сигналов |
Временные диаграммы |
4.Укажите какие временные диаграммы соответствуют перечисленным видам сигналов. |
|
ЭЛЕМЕНТЫЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Резистивноесопротивление – этоучасток цепи, в которой происходитпроцесс необратимого преобразованияэлектрической энергии в тепловую.
[R]=Ом
1кОм=103Ом
1МОм=106Ом
Элемент, которыйобладает электрическим сопротивлением,называетсярезистор
,
где ρ-удельное сопротивление
l-длина проводника.
S-площадь поперечного сечения
Электрическаяпроводимость- этоспособность тела проводить электрическийток.
[G]=См (Сименс)Индуктивность-это способностьтела накапливать энергию магнитногополя.
[L]=Гн(Генри)1мГн= 10-3Гн
1мкГн= 10-6Гн
Формула индуктивности, где;-потокосцепление катушки
Ф-магнитный поток, N-число витков катушки
Элемент которыйобладает индуктивностью, называетсякатушка индуктивности.
Для тороидальнойкатушки запишем расчетную формулу ееиндуктивности
lср-длина средней магнитной силовой линии
-магнитная постоянная, μ-относительная магнитная проницаемость.
Запишем формулуэнергии магнитного поля .
Емкость- этоспособность тела накапливать энергиюэлектрического поля
[C]-Ф (фарад)С-электрическая емкость.
1мкФ=10-6Ф
1нФ=10-9Ф
1пФ=10-12Ф
Элемент обладающийемкостью называютконденсатором. Конденсатор – этодве металлические пластины, разделенныеслоем диэлектрика.
Формула емкостиплоского конденсатора
ε0-электрическая постоянная, ε0=8,85·10-12Ф/м
ε-относительная диэлектрическаяпроницаемость
d-расстояние между пластинами
S-площадь одной пластины
Запишем формулуэнергии электрического поля
Тестовые задания:
Задание |
Варианты ответов |
2.Укажите какие из приведенных математических выражений соответствуют понятию индуктивность. |
а) ; б); в); г); д); |
3.Выберите из перечисленных величин величины, соответстствующие 25мкФ. |
а) 25·10-6 Ф; б) 25·106 Ф; в) 25·103 нФ; г) 25·106 пФ; д) 25·10-9 нФ; е) 25·10-12 пФ. |
Источник: https://StudFiles.net/preview/5241444/
Add comment