Kievuz

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ПРОЦЕСС ИХ РАЗРУШЕНИЯ ПРИ БУРЕНИИ

Содержание

Назовите основные физико-механические свойства горной породы и поясните их влияние на процесс бурения

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ПРОЦЕСС ИХ РАЗРУШЕНИЯ ПРИ БУРЕНИИ

Ответ на вопрос: «Назовите основные физико-механические свойства горной породы и поясните их влияние на процесс бурения».

    В механике горных пород изучаются следующие механические процессы и соответствующие им свойства.

  1. Деформирование – процесс изменения размеров или формы твердого тела под действием внешних сил. При деформировании проявляются такие свойства, как упругость, пластичность и вязкость твердых тел.
  2. Разрушение – разрыв внутренних связей (нарушение сплошности) твердого тела. При разрушении проявляется такое свойство, как прочность твердого тела.
  3. Изнашивание – диспергирование твердого тела с поверхности под действием работы трения. При изнашивании проявляются такие свойства, как износостойкость (сопротивление изнашиванию) и абразивность (способность изнашивать противостоящие материалы при трении).

При описании механических процессоров важнейшими являются понятия о деформациях и напряжениях.

Деформация – это относительное изменение размера или формы тела. Обратимой (упругой) деформация называется в том случае, если при устранении внешних сил размеры и форма тела полностью восстанавливаются. Необратимой (пластической) деформация называется в том случае, когда с устранением внешних сил форма и размеры тела не восстанавливаются.

Сопротивление тела деформированию в рассматриваемой точке принято характеризовать отношением равнодействующей внутренних сил dR, действующих на элементарной площадке сечения, проведенного через рассматриваемую точку, к площади dF этой площадки:
dR / dF = p.
Величина р векторная и называется напряжением в точке.

Проекция вектора р на нормаль к рассматриваемой площадке обозначается σ и называется нормальным напряжением, а проекция вектора p на плоскость площадки обозначается τ и называется касательным напряжением.

Соответственно деформация, обусловленная нормальным напряжением и совпадающая с ним по направлению, обозначается ε и называется нормальной, а деформация γ называется касательной деформацией или деформацией сдвига.

Способность твердого тела оказывать сопротивление разрушению от внешнего механического воздействия называется его прочностью. При разрушении рвутся связи между частицами кристаллической структуры, не меняя агрегатного состояния вещества. Прочность оценивается по предельным напряжениям, которые могут быть созданы в опасном сечении твердого тела.

    Основные модели твердых тел следующие:

  1. Идеальное упругое тело или тело Гука, деформация которого прямо пропорциональна соответствующему напряжению. При рассмотрении моделей использованы деформации сдвига и касательные напряжения, тогда
    γ = τ / G,где γ – деформация сдвига;
    τ – касательные напряжения;
    G – модуль деформации (упругости) при сдвиге.
  2. Идеальное упругопластическое тело деформируется упруго в области τ < τs, где τs – касательные напряжения, соответствующие пределу текучести материала куба, а при τ = τs деформируется пластически при постоянных напряжениях (τ = τs = const, γ → ∞).
  3. Упругопластическое упрочняющееся тело отличается от идеального упругопластического тела только тем,
    что при τ > τs для приращения пластической деформации необходимо увеличивать напряжения.
  4. Вязкое тело или тело Ньютона описывает зависимость скорости деформирования от напряжения, а именно
    dγ / dt = τ / η,где t – время; η – коэффициент вязкости твердого тела.

Виды и классы разрушения твердых тел

Разрушение называется хрупким, если необратимая (пластическая) деформация, предшествующая разрушению, практически отсутствует, но четко выражены поверхности разрушения.

Разрыв – второй вид разрушения, при котором отсутствует поверхность разрушения, например, в результате пластической деформации растяжения сечение твердого тела уменьшается до исчезающе малых размеров.

Хрупкое разрушение и разрыв являются предельными видами разрушения.

Пластическое разрушение – это промежуточный вид, который характеризуется значительной пластической деформацией, предшествующей разрушению, и явно выраженной поверхностью разрушения.
Рис. 1. Зависимости деформаций сдвига от касательных напряжений для хрупких (а), хрупко-пластичных (б) и пластичных (в) твердых тел и области их деформирования:

I — упругая; II — пластичная с упрочнением; III — пластичная с разупрочнением (разрушение)

Хрупкие твердые тела отнесены к первому классу (рис. 1, а). Они деформируются линейно до момента их разрушения.

Хрупко-пластичные твердые тела отнесены ко второму классу (рис. 1, б). Вторая область характеризуется пластическим деформированием при увеличивающемся напряжении (упрочнении). Третья область характеризуется пластическим деформированием при уменьшающемся напряжении. Говорят, что имеет место разупрочнение материала.

Прочность твердого тела в этом случае описывают двумя показателями: пределом прочности τс и пределом текучести τs.

Пластичные твердые тела (рис. 1, в) деформируются сначала упруго (первая область), затем пластически (вторая область), а разрушение не происходит. Такие горные породы отнесены к третьему классу и их прочность характеризуется только пределом текучести.

Напряженное состояние горных пород в недрах земли

Осредненные напряжения в горных породах называются горным давлением, которое характеризуется двумя компонентами: геостатическим давлением рг и боковым давлением рб.

Горные породы не являются идеально упругими твердыми телами, и в них в разной степени проявляется их вязкость, которая обусловливает такие процессы, как релаксация напряжений и ползучесть.

Осадочные породы представляют собой двухкомпонентные системы – твердый скелет и флюид, заполняющий поры, каверны и открытые трещины между элементами скелета. Естественное давление флюида в породах-коллекторах принято называть пластовым, а в непроницаемых породах – поровым.

Схемы воздействия элементов вооружения породоразрушающих инструментов на горную породу при бурении

По принципу воздействия на горную породу все механические породоразрушающие инструменты для бурения скважин можно разделить на режуще-скалывающие, дробящие и дробяще-скалывающие.

Из схемы видно, что элемент вооружения долота, перемещаясь со скоростью vt, срезает (скалывает) горную породу.

Рис. 2. Схемы воздействия элементов вооружения породоразрушающих инструментов на горную породу при бурении: а — резание—скалывание; б — дробление; в — дробление—скалывание.

Долотом дробящего действия (рис. 2, б) наносятся прямые удары по поверхности забоя скважины.

Еще сложнее схема взаимодействия элементов вооружения дробяще-скалывающих долот (рис. 2, в).

Зуб долота вдавливается в породу силой Pz и одновременно участвует в обусловленных кинематикой долота скольжении со скоростью vt и вращении с угловой скоростью ω.

В это же время соседний зуб движется к поверхности породы со скоростью vy и наносит удар по поверхности породы. В следующие моменты времени нагрузка перераспределяется с первого зуба на второй, и далее первый зуб выходит из контакта с горной породой.

Элементы вооружения породоразрушающих инструментов имеют различную конфигурацию рабочей поверхности.

В одних случаях это резцы с плоской или скругленной поверхностью режущей кромки, в других – зубья в виде клина с плоской или скругленной вершиной, а в третьих – штыри (зубки) со сферической головкой.

Выбор формы рабочей поверхности подчинен проблемам обеспечения высокой интенсивности разрушения горной породы и достаточных прочности и износостойкости элементов вооружения.

Понятие о твердости

Твердость – это сопротивление, которое оказывает испытуемое тело при внедрении в него другого, более твердого тела.

Мерой твердости в технике является давление на поверхности контакта индентора, соответствующее достижению под индентором предельного состояния испытываемого материала.

    Инденторы для испытания материалов на твердость классифицируются по виду их рабочей поверхности:

  1. острые, например, конус для определения твердости по Роквеллу, пирамида Виккерса для определения твердости по Виккерсу и микротвердости минералов или материалов деталей весьма малых размеров;
  2. сферические, например, шарик для определения твердости по Бринеллю;
  3. с плоской рабочей поверхностью, например, цилиндрический штамп с плоским основанием для измерения твердости по Л.А. Шрейнеру.

Рис. 3.

Наиболее удобной геометрической формой индентора является цилиндрический штамп с плоским основанием (рис.3, а).

Метод вдавливания штампа позволяет не только определять твердость горных пород, но и оценивать их упругие и пластические характеристики на небольших образцах и на кернах, извлекаемых в процессе бурения скважин с различных глубин залегания.
Рис. 4. Характерные графики зависимости нагрузки на штамп от глубины его вдавливания для пород:

а — хрупких, б — пластично-хрупких, в — высокопластичных и сильно пористых.

Обработка результатов испытаний. Горные породы по характеру зависимости нагрузки на штамп от глубины его внедрения делятся на три класса: I – хрупкие, II – пластично-хрупкие, III – высокопластичные и сильно пористые.

Л.А. Шрейнер предложил все горные породы по их твердости и пределу текучести по штампу разделить на 12 категорий.

Основные сведения об абразивности горных пород и изнашивании металлов

В горном деле под абразивностью горных пород понимают их способность изнашивать металлы при трении.

Изнашивание – процесс преимущественно механический (усталостные явления на поверхностях трения, их деформирование, царапание, резание), а поэтому показатели абразивности горных пород рассматриваются как показатели их механических свойств.

Под изнашиванием понимается постепенное изменение формы и размеров детали или инструмента в процессе работы. Результат изнашивания, проявляющийся в виде отделения частиц твердого тела или остаточной деформации его поверхности, называется износом.

    В технике используются, в основном, два показателя изнашивания:

  1. интенсивность изнашивания – износ, приходящийся на единицу работы трения;
  2. скорость изнашивания – износ в единицу времени a = W / t0,где

    W – износ в любых единицах, например, в мг, мм, мм3 и т.д.;

    t0 – время изнашивания твердого тела.

Вид и показатели изнашивания зависят от большого числа факторов, к основным из которых относятся: свойства трущихся поверхностей (шероховатость, соотношение твердостей), режим трения, вид и свойства среды, в которой работают детали или инструменты.

Режим трения характеризуется контактным давлением, скоростью относительного перемещения изнашиваемых поверхностей, характером приложения нагрузки, частотой взаимодействия и др.

Среда характеризуется, главным образом, смазывающей и охлаждающей способностями. Детали горного оборудования и инструмента чаще всего работают в воздушной среде, в воде и водных растворах, в среде углеводородных жидкостей (масла, буровые растворы на нефтяной основе), а также в различных эмульсиях.

Абразивность горных пород обусловливает долговечность бурильного и породоразрушающего инструментов и, следовательно, оказывает большое влияние на выбор техники и технологии бурения. Для определения показателей абразивности применяют два метода: метод изнашивания эталонного стержня (метод «сверления») и метод изнашивания вращающегося диска.

Метод изнашивания вращающегося диска разрабатывался по инициативе Л.А. Шрейнера применительно к работе инструментов с периодическим контактом элементов вооружения с забоем, характерным для шарошечных инструментов.

Рис. 5.

Образцы металла 1 (см. рис. 5) готовят из долотных сталей или твердого сплава, т.е. из того металла по отношению к которому определяют абразивность горной породы.

К группе высокоабразивных горных пород относят карбонатные и обломочные отложения с примесью кварца и халцедона песчаной фракции, алевролиты и мелкозернистые песчаники. Средне- и крупнозернистые кварцевые песчаники относятся к 12 категории.

Вопросы для подготовки к госэкзамену по специальности «Бурение нефтяных и газовых скважин»

Источник: http://www.megapetroleum.ru/nazovite-osnovnye-fiziko-mexanicheskie-svojstva-gornoj-porody-i-poyasnite-ix-vliyanie-na-process-bureniya/

Физико-механические свойства горных пород. Виды и классификация горных пород

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ПРОЦЕСС ИХ РАЗРУШЕНИЯ ПРИ БУРЕНИИ

Физико-механические свойства в совокупности описывают реакцию конкретной горной породы на различные типы нагрузки, что имеет большое значение при разработке скважин, строительстве, добыче полезных ископаемых и других работах, связанных с разрушением породных массивов. Благодаря этим сведениям можно рассчитать параметры режима бурения, правильно подобрать инструмент и определить конструкцию скважины.

Физико-механические свойства горных пород во многом зависят от входящих в их состав породообразующих минералов, а также от характера процесса формирования. Реакция породы на различные механические воздействия определяется особенностью ее структуры и химического состава.

Что такое горная порода

Горная порода — это образованная минеральными агрегатами или их обломками геологическая масса, обладающая определенными текстурой, структурой и физико-механическими свойствами.

Под текстурой понимают характер взаимного расположения минеральных частиц, а структура описывает все особенности строения, к которым относятся:

  • характеристика минеральных зерен (форма, размер, описание поверхности);
  • особенности соединения минеральных частиц;
  • состав и структура скрепляющего цемента.

Текстура и структура в совокупности составляют внутреннее строение горной породы. Эти параметры в значительной степени определяются природой породообразующих материалов и характером геологических процессов формирования, которые могут протекать как в глубине, так и на поверхности.

В упрощенном понимании горная порода представляет собой слагающее земную кору вещество, характеризующееся определенным минеральным составом и дискретным набором физико-механических свойств.

Горные породы могут быть образованы минералами разного агрегатного состояния, наиболее часто — твердого. Значительно реже встречаются породы из жидких минералов (вода, нефть, ртуть) и газообразных (природный газ). Твердые агрегаты чаще всего имеют форму кристаллов определенной геометрической формы.

Из 3000 известных в настоящее время минералов лишь несколько десятков являются породообразующими. Среди последних выделяют шесть разновидностей:

  • глинистые;
  • карбонатные;
  • хлоридные;
  • окисные;
  • сульфатные;
  • силикатные.

Среди минералов, составляющих определенный вид горной породы, 95 % приходится на породообразующие и около 5 % — на акцессорные (иначе вспомогательные), которые представляют собой характерную примесь.

Горные породы могут залегать в земной коре сплошными слоями либо образовывать отдельные тела — камни и валуны. Последние представляют собой твердые куски любого состава, за исключением металлов и песка. В отличие от камня, валун имеет гладкую поверхность и округлую форму, которые сформировались в результате обкатывания водой.

Классификация

В основе классификации горных пород лежит в первую очередь происхождение, на основании которого они подразделяются на 3 большие группы:

  • магматические (иначе называются изверженными) — формируются в результате подъема из глубин мантийного вещества, которое в результате изменения давления и температуры затвердевает и кристаллизуется;
  • осадочные — образуются в результате накопления продуктов механического или биологического разрушения других пород (выветривания, дробления, переноса частиц, химического разложения);
  • метаморфические — являются результатом преобразования (например, перекристаллизации) магматических или осадочных пород.

Происхождение отражает характер геологического процесса, в результате которого образовалась порода, поэтому каждому типу формирования соответствует определенный набор свойств. В свою очередь, классификация внутри групп учитывает также особенности минерального состава, текстуры и структуры.

Характер строения магматических пород определяется скоростью остывания мантийного вещества, которая обратно пропорциональна глубине. Чем дальше от поверхности, тем магма застывает медленней, формируя плотную массу с крупными минеральными кристаллами. Типичным представителем глубинной магматической породы является гранит.

Быстрый прорыв магмы на поверхность возможен через трещины и разломы земной коры. В таком случае мантийное вещество быстро затвердевает, образуя тяжелую плотную массу с мелкими кристаллами, часто неразличимыми на глаз. Наиболее распространенной породой такого типа является базальт, имеющий вулканическое происхождение.

Магматические породы подразделяются на интрузивные, которые сформировались в глубине, и эффузивные (иначе излившиеся), которые застыли на поверхности. Первые характеризуются более плотной структурой. Основными минералами магматических пород являются кварц и полевые шпаты.

Осадочные породы

По происхождению и составу выделяют 4 группы осадочных пород:

  • обломочные (терригенные) — осадок накапливается из продуктов механического раздробления более древних пород;
  • хемогенные — образуются в результате процессов химического осаждения;
  • биогенные — формируются из остатков живой органической материи;
  • вулканогенно-осадочные — формируются в результате вулканической деятельности (туфы, кластолавы и др).

Именно из осадочных пород добываются общераспространенные полезные ископаемые органического происхождения, обладающие горючими свойствами (нефть, асфальт, газы, каменный и бурый уголь, озокерит, антрацит и др.). Такие образования называют каустобилитами.

Метаморфические породы

Метаморфические породы формируются в результате преобразования более древних геологических масс различного генеза. Такие изменения являются следствием тектонических процессов, приводящих к погружению пород на глубину, в условия с более высокими значениями давления и температуры.

Перемещения земной коры также сопровождаются миграцией глубинных растворов и газов, которые взаимодействуют с минералами, вызывая образование новых химических соединений. Все эти процессы приводят к изменению состава, структуры, текстуры и физико-механических свойств пород. В качестве примера такого метаморфизма можно привести превращение песчаника в кварцит.

Общая характеристика физико-механических свойств и их практическое значение

К основным физико-механическим свойствам горных пород относят:

  • параметры, описывающие деформацию под действием различных нагрузок (пластичность, плывучесть, упругость);
  • реакции на вмешательство твердого тела (абразивность, твердость);
  • физические параметры породной массы (плотность, водопроницаемость, пористость и др);
  • реакции на механическое воздействие (хрупкость, прочность).

Все эти характеристики позволяют определить скорость разрушения горной породы, риск обвалов и экономическую стоимость бурения.

Данные по физико-химическим свойствам играют огромную роль в проведении работ по добыче общераспространенных полезных ископаемых. Особое значение имеет характер взаимодействия горной породы с буровым инструментом, влияющий на эффективность работы и износ оборудования. Этот параметр характеризуется абразивностью.

В отличие от других твердых тел, у горных пород физико-механические свойства характеризуются неравномерностью, то есть варьируют в зависимости от направления нагрузки. Такая особенность называется анизотропностью и определяется соответствующим коэффициентом (Кан).

Плотностные характеристики

К этой категории свойств относят 4 параметра:

  • плотность — масса единицы объема только твердой составляющей породы;
  • объемную массу — рассчитывается как плотность, но с учетом имеющихся пустот, к которым относят поры и трещины;
  • пористость — характеризует количество пустот в структуре породы;
  • трещиноватость — показывает количество трещин.

Так как масса воздушных полостей по сравнению с твердым веществом ничтожна, у пористых горных пород плотность всегда больше объемной массы. Если кроме пор в породе имеются трещины, эта разница увеличивается.

У пористых горных пород значение объемной массы всегда превышает плотность. Эта разница увеличивается при наличии трещин.

От количества пустот зависят другие физико-химические свойства горных пород. Пористость уменьшает прочность, что делает породу более восприимчивой к разрушению. Тем не менее такая масса более шершавая и сильнее повреждает буровой инструмент. Пористость также влияет на водопоглощение, проницаемость и влагоемкость.

Самые пористые горные породы имеют осадочное происхождение. В метаморфических и магматических породах общий объем трещин и пустот очень небольшой (не более 2 %). Исключение составляют несколько пород, отнесенных к категории излившихся. Они имеют пористость до 60 %. Примером таких пород являются трахиты, туфовые лавы и др.

Проницаемость

Проницаемость характеризует взаимодействие бурового раствора с горными породами в процессе бурения скважин. Эта категория свойств включает 4 характеристики:

  • фильтрацию;
  • диффузию;
  • теплообмен;
  • капиллярную пропитку.

Первое свойство данной группы является определяющим, так как влияет на степень поглощения бурового раствора и разрушение пород в зоне перфорации. Фильтрация вызывает набухание и потерю устойчивости пластов глинистых горных пород после первичного вскрытия. На этом параметре основаны расчеты по добыче нефти и газа.

Прочность

Прочность характеризует способность горной породы противостоять разрушению под воздействием механической нагрузки. Математически это свойство выражается в критической величине напряжения, при которой порода разрушается. Это значение называют пределом прочности. Фактически он устанавливает порог воздействия, до достижения которого порода устойчива к определенному типу нагрузки.

Существуют 4 вида пределов прочности: на изгиб, сдвиг, растяжение и сжатие, которые характеризуют сопротивляемость соответствующим механическим нагрузкам. При этом воздействие может быть одноостным (односторонним) или многоостным (происходит со всех сторон).

Прочность является комплексной величиной, в которую включены все пределы сопротивляемости. На основе этих значений в системе координат строят специальный паспорт, представляющий собой огибающую кругов напряжений.

Самый простой вариант графика учитывает только 2 значения, например, растяжения и сжатия, пределы которых откладываются на осях абцисс и ординат.

На основании полученных экспериментальных данных чертят круги Мора, а затем — касательную к ним. Точки внутри кругов на таком графике соответствуют значениям напряжения, при которых порода разрушается.

Полный паспорт прочности включает все виды пределов.

Упругость

Упругость характеризует способность породы восстанавливать первоначальную форму после снятия деформирующей нагрузки. Это свойство характеризуется четырьмя параметрами:

  • модулем продольной упругости (иначе Юнга) — представляет собой численное выражение пропорциональности между значениями напряжения и вызываемой им продольной деформацией;
  • модулем сдвига — мера пропорциональности между касательным напряжением и относительной деформацией сдвига;
  • модулем объемной упругости — рассчитывается как отношение напряжения к относительной упругой деформации по объему (сжатие происходит равномерно со всех сторон);
  • коэффициентом Пуассона — мера пропорциональности между величинами относительных деформаций, происходящих в разных направлениях (продольном и поперечном).

Модуль Юнга характеризует жесткость породы и ее способность к упругому сопротивлению нагрузке.

Реологические свойства

Эти свойства иначе называют вязкостными. Они отражают снижение прочности и напряжений в результате длительного действия нагрузки и выражаются в двух основных параметрах:

  • ползучести — характеризует постепенное увеличение деформации при постоянном напряжении;
  • релаксации — определяет время уменьшения напряжений, возникающих в породе при непрерывной деформации.

Явление ползучести проявляется тогда, когда значение механического воздействия на породу меньше, чем предел упругости. При этом нагрузка должна быть достаточно длительной.

Методы определения физико-механических свойств горных пород

В основе определения этой группы свойств лежит опытное вычисление реакции на нагрузки.

Например, для установления пределов прочности образец породы сжимают под прессом или растягивают, выясняя уровень воздействия, который приводит к разрушению.

Параметры упругости определяются по соответствующим формулам. Все эти методы называют нагружением физическими инденторами в условиях лаборатории.

Некоторые физико-механические свойства могут определяться и в натурных условиях с использованием метода обрушения призм. Несмотря на сложность и высокую стоимость, такой способ более реалистично определяет ответ природного геологического массива на нагрузку.

Источник: https://FB.ru/article/414192/fiziko-mehanicheskie-svoystva-gornyih-porod-vidyi-i-klassifikatsiya-gornyih-porod

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ПРОЦЕСС ИХ РАЗРУШЕНИЯ ПРИ БУРЕНИИ

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И ПРОЦЕСС ИХ РАЗРУШЕНИЯ ПРИ БУРЕНИИ

Земная кора сложена главным образом изверженными и метаморфическими горными породами, на которых прерывистым покровом лежат осадочные породы. В строении нефтяных и газовых месторождений принимают участие только осадочные горные породы.

Важными признаками строения осадочных горных пород, имеющими существенное значение при их разрушении, являются их структура и текстура. Под структурой горной породы понимаются те ее особенности, которые обусловлены формой, размерами и характером поверхности образующих их материалов.

Большинство осадочных пород сложено рыхлыми сцементированными минеральными обломками различных размеров, имеющими неправильные очертания. Основная структурная особенность осадочных пород, характеризующая их механические свойства, структура цементов, связывающих отдельные обломки.

Текстура указывает на особенности строения всей породы в целом и выявляет взаимное пространственное расположение минеральных частиц.

Основные особенности текстуры осадочных пород слоистость, сланцеватость (способность породы раскалываться по параллельным плоскостям на тонкие пластинки) и пористость (пористостью называется отношение объема всех пустот к объему всей породы, выраженное в процентах).

По природе сил сцепления между частицами осадочные породы подразделяются на три основные группы: скальные, связные (пластичные) и сыпучие. Силы сцепления скальных пород (песчаников, известняков, мергелей и др.) характеризуются молекулярным притяжением частиц друг к другу, а также наличием сил трения.

Силы сцепления пластичных пород (глинистых) характеризуются взаимодействием коллоидных частиц, адсорбирующихся на поверхности обломков, а также наличием сил трения.

Сыпучие породы (песок) не обладают сцеплением ни в сухом состоянии, ни при полном насыщении водой. Только при ограниченном насыщении водой у сыпучих пород наблюдаются силы сцепления, обусловленные трением.

Всем породам, кроме сил сцепления, присущи силы внутреннего трения, зависящие от давления, прижимающего частицы друг к другу.

2.2. ОСНОВНЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД, ВЛИЯЮЩИЕ НА ПРОЦЕСС БУРЕНИЯ

Основные физико-механические свойства горных пород, влияющие на процесс бурения, их упругие и пластические свойства, твердость, абразивность и сплошность.

Упругие свойства горных пород. Все горные породы под воздействием внешних нагрузок претерпевают деформации, исчезающие после удаления нагрузки или остающиеся. Первые из них называются упругими деформациями, а вторые пластическими. Большинство породообразующих минералов – тела упруго хрупкие, т. е. они подчиняются закону Гука и разрушаются, когда напряжения достигают предела упругости.

Горные породы также относятся к упруго хрупким телам, но в отличие от минералов они подчиняются закону Гука только при динамическом приложении нагрузки.

Упругие свойства горных пород характеризуются модулем упругости (модуль Юнга) и коэффициентом Пуассона.

Модуль упругости горных пород зависит от их минералогического состава, вида нагружения и величины приложенной нагрузки, от структуры, текстуры и глубины залегания пород, от состава и строения цементирующего вещества у обломочных пород, от степени влажности, песчаности и карбонатности пород.

Пластические свойства горных пород (пластичность). Разрушению некоторых пород предшествует пластическая деформация. Она начинается, как только напряжения в породе превысят предел упругости. Пластичность зависит от минералогического состава горных пород и уменьшается с увеличением содержания кварца, полевого шпата и некоторых других минералов.

Высокими пластическими свойствами обладают глины и некоторые породы, содержащие соли. При определенных условиях некоторые горные породы подвержены ползучести. Ползучесть проявляется в постоянном росте деформации при неизменном напряжении.

Значительной ползучестью характеризуются глины, глинистые сланцы, соляные породы, аргиллиты, некоторые разновидности известняков.

Твердость горных пород. Под твердостью горной породы понимается ее способность оказывать сопротивление проникновению в нее (внедрению) породоразрушающего инструмента.

В геологии большое распространение имеет шкала твердости минералов Мооса, по которой условную твердость минералов определяют методом царапания; по этой шкале твердость характеризуется отвлеченным числом (номером).

На основании многочисленных исследований Л.А.Шрейнер предложил классификацию горных пород, выгодно отличающуюся от шкалы твердости Мооса тем, что она наиболее полно учитывает основные физико-механические свойства горных пород, влияющих на процесс бурения.

К I группе относятся породы, не дающие общего хрупкого разрушения (слабо сцементированные пески, суглинки, известняк-ракушечник, мергели, глины с частыми прослоями песчаников, мергелей и т. п.).

Ко II группе относятся упругопластичные породы (сланцы, доломитизированные известняки, крепкие ангидриты, доломиты, конгломераты на кремнистом цементе, кварцево-карбонатные породы и т. п.).

К III группе относятся упругохрупкие, в основном изверженные и метаморфические породы.

Как правило, по твердости породы, участвующие в сложении нефтяных залежей, относятся к первым восьми категориям.

Абразивность горных пород. Под абразивностью горной породы понимается ее способность изнашивать контактирующий с ней породоразрушающий инструмент в процессе их взаимодействия.

Абразивность пород проявляется в процессе абразивного (преимущественно механического) изнашивания и является его характеристикой. Поэтому показатели абразивности можно рассматривать как показатели механических свойств горных пород.

Абразивность горной породы, как и любой другой показатель механических свойств, отражает ее поведение в конкретных условиях испытания или работы. Понятие об абразивной способности тесно связано с понятием о внешнем трении и износе. Абразивные свойства горных пород изучены слабо. На величину трения существенное влияние оказывает среда.

Коэффициент трения о породу, поверхность которой смочена глинистым раствором, меньше, чем тот же коэффициент при трении о породу, смоченную водой, и значительно ниже, чем коэффициент трения о сухую породу. Твердость горной породы, размер и форма зерен, образующих породу, существенно влияют на коэффициент внешнего трения.

Коэффициент трения о породу с более высокой твердостью при прочих равных условиях обычно более высокий, чем о породу с меньшей твердостью. Это объясняется тем, что абразивные зерна из такой породы выламываются трудней, а разрушающий инструмент царапается зернами этой же породы более интенсивно.

По этим же причинам коэффициент внешнего трения выше при трении о мелкозернистые породы с остроконечными зернами, чем при трении о крупнозернистую породу со скатанными зернами.

Среди горных пород наибольшей абразивностью обладают кварцевые и полевошпатовые песчаники и алевролиты (сцементированные обломочные породы с обломочными зернами размером от 0,01 до 0,1 мм).

В настоящее время разработано несколько классификаций по абразивности горных пород.

Сплошность горных пород. Понятие «сплошность горных пород» предложено для оценки структурного состояния горных пород, которые, исходя из степени пригодности внутриструктурных нарушений (трещин, пор, поверхностей рыхлого контакта зерен и т. д.), передают внутрь породы давления внешней жидкостной или газовой среды.

Разделяют четыре категории сплошности: к первой категории сплошности относятся породы, внутрь которых может проникнуть исходный глинистый раствор; ко второй — породы, внутрь которых проникает не только жидкость, но и твердые (глинистые) частицы; к третьей — породы, внутрь которых передается давление только маловязкой жидкости (типа воды); к четвертой — породы, внутрь которых внешнее гидравлическое давление не передается.

2.3. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД ПРИ БУРЕНИИ

Основной вид деформации, под действием которой породы в процессе бурения разрушаются, — вдавливание. Рассмотрим явления, происходящие в породе при действии постепенно возрастающей местной нагрузки, передающейся через штамп. Первоначально порода уплотняется в непосредственной близости от площадки контакта.

Затем, когда нагрузка достигает некоторого критического значения, в породе образуется конусообразная трещина, вершина которой обращена к вдавливаемому телу.

При дальнейшем увеличении нагрузки трещина продолжает развиваться в глубину; при этом образуется система хаотически расположенных трещин, порода в вершине конуса раздавливается в порошок, передающий давление во все стороны.

Под влиянием этого давления порода продолжает разрушаться до образования лунки. Описанный процесс внедрения штампа составляет один полный цикл разрушения. При дальнейшем нагружении штампа процесс во всех трех фазах повторяется.

Такая цикличность разрушения свойственна хрупким, прочным горным породам. В хрупких, но менее прочных горных породах разрушение также носит цикличный, но менее скачкообразный характер.

Разрушение малопрочных пород носит плавный характер.

Рассмотрим действие динамического вдавливания (ударов) на породу. Исследованиями установлено, что в результате ударов горные породы могут разрушаться при напряжениях, меньших, чем критические, соответствующих пределу прочности. Сам механизм разрушения аналогичен описанному выше.

Число ударов по одному и тому же месту может быть значительным. С увеличением силы удара число их уменьшается, и при некотором значении силы разрушение наступает после первого же удара.

Таким образом, горная порода может разрушаться как при действии статических, так и динамических нагрузок. Сила удара в процессе динамического разрушения зависит от нагрузки и скорости ее приложения.

Эффект разрушения в значительной мере зависит от формы твердого тела, которым разрушают горную породу. Все эти и некоторые другие факторы оказывают влияние на объемную работу разрушения.

Удельная контактная работа определяется отношением полной работы к площади контакта разрушающего инструмента:

Объемная работа разрушения при динамическом вдавливании в несколько раз выше, чем при статическом.

Порода, составляющая поверхность забоя и подлежащая разрушению, находится в условиях неравномерного всестороннего сжатия, создаваемого давлением столба бурового раствора, заполняющего скважину, и боковым давлением горных пород.

Сама поверхность забоя неоднородна и не представляет гладкую поверхность: отдельные частицы породы возвышаются над общим уровнем поверхности.

При действии разрушающего инструмента на породу эти частицы первыми воспринимают давление и передают его другим соседним частицам.

Некоторые из них дробятся, другие выламываются, третьи почти прямолинейно проталкиваются в направлении движения разрушающего инструмента.

При бурении нефтяных и газовых скважин основным инструментом, при помощи которого разрушается горная порода, является долото.

Долото проникает в породу и разрушает ее вследствие перемещения: 1) поступательного сверху вниз под действием нагрузки на долото, создаваемой массой нижней части колонны бурильных труб (эта нагрузка называется осевой нагрузкой); 2) вращательного, осуществляемого гидравлическим забойным двигателем, электробуром или ротором посредством бурильных труб.

Горная порода разрушается долотом посредством резания, скалывания или дробления. При резании осевая нагрузка действует непрерывно и ее можно считать статической.

В процессе скалывания и дробления приложенное усилие действует на забой прерывно, что вызывает дополнительные динамические нагрузки на забой (удары). Резание может осуществляться лопастными долотами. Скалывание происходит при использовании лопастных или шарошечных долот.

Дробление может осуществляться только шарошечными долотами. Алмазные долота разрушают породу путем истирания и резания.

Наибольшее распространение получили шарошечные долота, которые используют при бурении пород различной твердости (от мягких до самых крепких).

Рассмотрим процесс разрушения забоя скважины шарошечным долотом. Работа долот протекает в растворе или газе (в том случае, если в качестве бурового раствора применяется воздух или природный газ), содержащих обломки выбуренной породы.

Шарошки долот вращаются вокруг своей оси и вокруг оси вращения бурильных труб (при роторном бурении) или вала гидравлического забойного двигателя (электробура). Вращаясь вокруг своих осей, шарошки попеременно упираются в забой то одним, то двумя зубьями (рис. 4).

Иначе говоря, шарошка при

Рис. 4 Положение шарошек на забое

своем вращении то поднимается, то опускается, производя при этом частые удары по забою. Благодаря такому характеру перемещения зубья шарошки оказывают на породу не только статическое, но и динамическое воздействие. В зависимости от формы шарошек и положения их осей относительно оси долота происходит или чистое дробление, или дробление со скалыванием.

Интенсивность проскальзывания зубьев для данного шарошечного долота оценивают коэффициентом скольжения, который равен отношению суммы площадей, описываемых за один оборот долота кромками зубьев, скользящих по породе, к площади забоя скважины.

В том случае, когда образующие конуса шарошки будут лежать на мгновенной оси вращения и, следовательно, пересекаться на оси долота, коэффициент скольжения равен нулю. Буровой раствор, подаваемый на забой скважины через отверстия в долоте, должен обеспечить очистку шарошек долота, вынос разбуренной породы, охлаждение долота и очистку забоя, исключающую вторичное дробление породы долотом.

Увеличение гидравлической мощности, превращаемой в промывочных отверстиях долота в кинематическую энергию струи жидкости, ведет к увеличению проходки на долото и механической скорости бурения.

Гидростатическое давление столба бурового раствора уменьшает механическую скорость бурения, так как оно стремится удерживать частицы породы на первоначальном месте и тем самым помогает породе сопротивляться разрушению.

Источник: http://kursak.net/fiziko-mexanicheskie-svojstva-gornyx-porod-i-process-ix-razrusheniya-pri-burenii/

ovdmitjb

Add comment