Kievuz

История развития ультразвуковых технологий в науке и производстве

Содержание

УЛЬТРАЗВУК

История развития ультразвуковых технологий в науке и производстве
статьи

УЛЬТРАЗВУК, упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 000 колебаний в секунду (Гц); колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).

Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных физических и технологических методах.

По скорости распространения звука в среде судят о ее физических характеристиках.

Измерения скорости на ультразвуковых частотах производятся с очень большой точностью; вследствие этого с весьма малыми погрешностями определяются, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Гидролокация

В конце Первой мировой войны появилась одна из первых практических ультразвуковых систем, предназначенная для обнаружения подводных лодок.

Пучок ультразвукового излучения может быть сделан остро направленным, и по отраженному от цели сигналу (эхо-сигналу) можно определить направление на эту цель. Измеряя время прохождения сигнала до цели и обратно, определяют расстояние до нее.

К настоящему времени система, именуемая гидролокатором, или сонаром, стала неотъемлемым средством мореплавания. См. также ГИДРОЛОКАТОР.

Если направить импульсное ультразвуковое излучение в сторону дна и измерить время между посылом импульса и его возвратом, можно определить расстояние между излучателем и приемником, т.е. глубину.

Основанные на этом сложные системы автоматической регистрации применяются для составления карт дна морей и океанов, а также русел рек.

Соответствующие навигационные системы атомных подводных лодок позволяют им совершать безопасные переходы даже под полярными льдами.

Дефектоскопия

Зондирование ультразвуковыми импульсами применяется и для исследований свойств различных материалов и изделий из них.

Проникая в твердые тела, такие импульсы отражаются от их границ, а также от различных инородных образований в толще исследуемой среды, таких, как полости, трещины и др., указывая на их расположение. Ультразвук «проверяет» материал, не вызывая в нем разрушений.

Такими неразрушающими методами контроля проверяют качество массивных стальных поковок, алюминиевых блоков, железнодорожных рельсов, сварных швов машин.

Ультразвуковой расходомер

Принцип действия такого прибора основан на эффекте Доплера. Импульсы ультразвука направляются попеременно по потоку и против него. При этом скорость прохождения сигнала то складывается из скорости распространения ультразвука в среде и скорости потока, то эти величины вычитаются.

Возникающая разность фаз импульсов в двух ветвях измерительной схемы регистрируется электронным оборудованием, и в итоге измеряется скорость потока, а по ней и массовая скорость (расход).

Этот измеритель не вносит изменений в поток жидкости и может применяться как к потоку в замкнутом контуре, например, для исследований кровотока в аорте или системы охлаждения атомного реактора, так и к открытому потоку, например реки.

Химическая технология

Вышеописанные методы относятся к категории маломощных, в которых физические характеристики среды не изменяются. Но существуют и методы, в которых на среду направляют ультразвук большой интенсивности.

При этом в жидкости развивается мощный кавитационный процесс (образование множества пузырьков, или каверн, которые при повышении давления схлопываются), вызывая существенные изменения физических и химических свойств среды (см. КАВИТАЦИЯ).

Многочисленные методы ультразвукового воздействия на химически активные вещества объединяются в научно-техническую отрасль знаний, называемую ультразвуковой химией. В ней исследуются и стимулируются такие процессы, как гидролиз, окисление, перестройка молекул, полимеризация, деполимеризация, ускорение реакций.

Ультразвуковая пайка

Кавитация, обусловленная мощными ультразвуковыми волнами в металлических расплавах и разрушающая окисную пленку алюминия, позволяет проводить его пайку оловянным припоем без флюса. Изделия из спаянных ультразвуком металлов стали обычными промышленными товарами.

Ультразвуковая механическая обработка

Энергия ультразвука успешно используется при машинной обработке деталей.

Наконечник из малоуглеродистой стали, выполненный в соответствии с формой поперечного сечения желаемого отверстия (или полости), крепится твердым припоем к концу усеченного металлического конуса, на который воздействует ультразвуковой генератор (при этом амплитуда вибраций составляет до 0,025 мм).

В зазор между стальным наконечником и обрабатываемой деталью подается жидкая суспензия абразива (карбида бора).

Поскольку в таком методе режущим элементом выступает абразив, а не стальной резец, он позволяет обрабатывать очень твердые и хрупкие материалы – стекло, керамику, алнико (Fe–Ni–Co–Al-сплав), карбид вольфрама, закаленную сталь; кроме того, ультразвуком можно обрабатывать отверстия и полости сложной формы, так как относительное движение детали и режущего инструмента может быть не только вращательным.

Ультразвуковая очистка

Важной технологической проблемой является очистка поверхности металла или стекла от мельчайших посторонних частиц, жировых пленок и других видов загрязнения. Там, где слишком трудоемка ручная очистка или необходима особая степень чистоты поверхности, применяется ультразвук.

В кавитирующую омывающую жидкость вводится мощное ультразвуковое излучение (создающее переменные ускорения с частотой до 106 Гц), и схлопывающиеся кавитационные пузырьки срывают с обрабатываемой поверхности нежелательные частицы.

В промышленности используется много различного ультразвукового оборудования для очистки поверхностей кварцевых кристаллов и оптического стекла, малых прецизионных шарикоподшипников, снятия заусенец с малогабаритных деталей; применяется оно и на конвейерных линиях.

Применение в биологии и медицине

То, что ультразвук активно воздействует на биологические объекты (например, убивает бактерии), известно уже более 70 лет. Ультразвуковые стерилизаторы хирургических инструментов применяются в больницах и клиниках.

Электронная аппаратура со сканирующим ультразвуковым лучом служит целям обнаружения опухолей в мозгу и постановки диагноза, используется в нейрохирургии для инактивации отдельных участков головного мозга мощным сфокусированным высокочастотным (порядка 1000 кГц) пучком.

Но наиболее широко ультразвук применяется в терапии – при лечении люмбаго, миалгии и контузий, хотя до сих пор среди медиков нет единого мнения о конкретном механизме воздействия ультразвука на больные органы.

Высокочастотные колебания вызывают внутренний разогрев тканей, сопровождаемый, возможно, микромассажем.

Генерация ультразвуковых волн

Ультразвук можно получить от механических, электромагнитных и тепловых источников. Механическими излучателями обычно служат разного рода сирены прерывистого действия.

В воздух они испускают колебания мощностью до нескольких киловатт на частотах до 40 кГц.

Ультразвуковые волны в жидкостях и твердых телах обычно возбуждают электроакустическими, магнитострикционными и пьезоэлектрическими преобразователями.

Магнитострикционные преобразователи

Эти устройства преобразуют энергию магнитного поля в механическую (звуковую или ультразвуковую) энергию. Их действие основано на магнитоупругом эффекте, т.е. на том, что некоторые металлы (железо, никель, кобальт) и их сплавы деформируются в магнитном поле.

Ярко выраженными магнитоупругими свойствами обладают и ферриты (материалы, спекаемые из смеси окиси железа с окислами никеля, меди, кобальта и других металлов). Если магнитоупругий стержень расположить вдоль переменного магнитного поля, то этот стержень станет попеременно сокращаться и удлиняться, т.е.

испытывать механические колебания с частотой переменного магнитного поля и амплитудой, пропорциональной его индукции. Вибрации преобразователя возбуждают в твердой или жидкой среде, с которой он соприкасается, волны ультразвука той же частоты.

Обычно такие преобразователи работают на собственной частоте механических колебаний, так как на ней наиболее эффективно преобразование энергии из одной формы в другую. Магнитострикционные преобразователи из тонкого листового металла работают лучше всего в низкочастотном ультразвуковом диапазоне (от 20 до 50 кГц), на частотах выше 100 кГц у них очень низкий КПД.

Пьезоэлектрические преобразователи

преобразуют электрическую энергию в энергию ультразвука. Действие их основано на обратном пьезоэлектрическом эффекте, проявляющемся в деформациях некоторых кристаллов под действием приложенного к ним электрического поля.

Этот эффект хорошо проявляется у природного или искусственно выращенного монокристалла кварца или сегнетовой соли, а также у некоторых керамических материалов (например, у титаната бария).

Переменное электрическое поле частоты желаемого ультразвука подается через напыленные металлические электроды, располагающиеся на противоположных гранях образца, вырезанного определенным образом из пьезоэлектрика. При этом возникают механические колебания, которые и распространяются в виде ультразвука в сопредельной жидкой или твердотельной среде.

Пьезоэлектрические преобразователи в виде тонких кристаллических пластинок могут излучать мощные ультразвуковые волны частотой до 1 МГц (в лабораторных условиях получены частоты до 1000 МГц). Длина ультразвуковой волны (обратно пропорциональная частоте) очень мала, поэтому из таких волн, как и из световых, можно формировать узконаправленные пучки.

Достоинство керамических пьезоэлектриков состоит в том, что из них можно отливать, прессовать или получать выдавливанием преобразователи разных размеров и форм. Такой преобразователь, выполненный в виде чаши сферического контура, способен сфокусировать ультразвуковое излучение в малое пятно очень большой интенсивности. Ультразвуковые линзы фокусируют звуковые волны так же, как лупы фокусируют свет.

Обнаружение и измерения на ультразвуке

Энергия акустического поля определяется в основном звуковым давлением и скоростью частиц среды, в которой звук распространяется. Обычно звуковое давление в газах (воздухе) и жидкостях (воде) имеет порядок 10-3–10-6 давления окружающей среды (равного 1 атм на уровне моря).

Давление ультразвуковой волны превосходит это значение в тысячи раз и легко обнаруживается с помощью микрофонов в воздухе и гидрофонов в воде. Разработаны специальные средства измерений для приема и получения количественных характеристик ультразвукового излучения, особенно на высоких частотах.

Поскольку волны сжатия и разрежения в газах и жидкостях меняют показатель преломления среды, для визуализации этих процессов созданы оптические методы. При отражении ультразвука в замкнутой системе образуется стоячая волна, воздействующая на излучатель.

В устройствах такого типа, называемых ультразвуковыми интерферометрами, длина волны в среде измеряется с очень большой точностью, что позволяет получать данные о физических характеристиках среды.

С помощью интенсивного ультразвукового пучка можно оценить и измерить давление ультразвукового излучения, аналогично тому, как это делается при измерении светового давления. Это давление связано с плотностью энергии ультразвукового поля и позволяет простейшим способом определить интенсивность распространяющейся ультразвуковой волны.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/ULTRAZVUK.html

История развития ультразвуковой диагностики

История развития ультразвуковых технологий в науке и производстве

Современным пациентам сложно представить, что ещё не так давно медики обходились без такого метода диагностики, как ультразвуковое исследование. Ультразвук произвёл настоящую революцию в медицине, наделив врачей высокоинформативным и безопасным способом обследования пациентов.

Всего за каких-то полвека, которые насчитывает история ультразвуковой медицины, УЗИ стало главным помощником в диагностике большинства заболеваний. Как же появился и развивался этот метод?

Первые исследования ультразвуковых волн

О наличии в природе звуковых волн, не воспринимаемых человеком, люди догадывались давно, но открыл «невидимые лучи» итальянец Л. Спалланцани в 1794 г., доказав, что летучая мышь с заткнутыми ушами перестаёт ориентироваться в пространстве.

Первые научные опыты с ультразвуком стали проводиться еще в XIX в. Швейцарскому учёному Д. Колладену в 1822 г. удалось вычислить скорость звука в воде, погружая в Женевское озеро подводный колокол, и это событие предопределило рождение гидроакустики.

В 1880 году братья Кюри обнаружили пьезоэлектрический эффект, возникающий в кварцевом кристалле при механическом воздействии, а спустя 2 года был сгенерирован и обратный пьезоэффект. Это открытие легло в основу создания из пьезоэлементов преобразователя ультразвука – главного компонента любого УЗ-оборудования.

XX век: гидроакустика и металлодетекция

Начало XX века ознаменовалось развитием гидролокации – обнаружения объектов под водой при помощи эха. Созданием первых эхолотов мы обязаны сразу нескольким учёным из разных стран: австрийцу Э.

Бэму, англичанину Л. Ричардсону, американцу Р. Фессендену.

Благодаря гидролокаторам, сканировавшим морские глубины, стало возможным находить подводные препятствия, затонувшие корабли, а в годы I мировой войны – вражеские субмарины.

Еще одним ультразвуковым направлением стало создание в начале 30-х годов дефектоскопов для поиска изъянов в металлических конструкциях. Своё место УЗ-металлодетекция нашла в промышленности. Одним из основателей данного метода стал российский учёный С.Я. Соколов.

Методы эхолокации и металлодетекции заложили фундамент для первых экспериментов с живыми организмами, которые и проводились приборами промышленного назначения.

Ультразвук: шаг в медицину

Попытки поставить ультразвук на службу медицине относятся к 30-м годам XX века. Его свойства начали применять в физиотерапии артритов, экземы и ряда других заболеваний.

Опыты, начавшиеся в 40-е годы, были направлены уже на использование УЗ-волн в качестве инструмента диагностики новообразований. Успехов в исследованиях достиг венский психоневролог К.

Дюссик, который в 1947 году представил метод, названный гиперсонографией. Доктору Дюссику удалось обнаружить опухоль мозга, замеряя интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

Именно этот учёный считается одним из родоначальников современной УЗ-диагностики.

Настоящий прорыв в развитии УЗД произошел в 1949 году, когда учёный из США Д. Хаури сконструировал первый аппарат для медицинского сканирования.

Это и последующие творения Хаури мало напоминали современные приборы.

Они представляли собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп.

Примерно в это же время американский хирург Дж. Уайлд создал портативный прибор с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод он назвал эхографией.

В последующие годы УЗИ-сканеры совершенствовались, и к середине 60-х годов они стали приобретать вид, близкий к современному оборудованию с мануальными датчиками. Тогда же западные врачи начали получать лицензии для использования в практике метода УЗД.

Узд в советской медицине

Эксперименты по применению ультразвука проводились и советскими учеными. В 1954 году в институте акустики Академии Наук СССР появилось специализированное отделение, возглавляемое профессором Л. Розенбергом.

Выпуск отечественных УЗИ-сканеров был налажен в 60-е годы в НИИ инструментов и оборудования. Учёные создали ряд моделей, предназначенных для применения в различных медицинских сферах: кардиологии, неврологии, офтальмологии. Но все они так и остались в статусе экспериментальных и не получили «места под солнцем» в практической медицине.

К тому моменту, когда советские врачи начали проявлять интерес к ультразвуковой диагностике, им уже приходилось пользоваться плодами достижений западной науки, поскольку к 90-м годам прошлого века отечественные разработки безнадёжно устарели и отстали от времени.

Современные технологии в УЗИ

Методы ультразвуковой диагностики продолжают активно развиваться. На смену обычной двухмерной визуализации приходят новые технологии, позволяющие получать объёмную картинку, «путешествовать» внутри полостей тела, воссоздавать внешний вид плода. Например:

  1. Трёхмерное УЗИ – создаёт 3D изображение в любом ракурсе.
  2. Эхоконтрастирование – УЗИ с применением внутривенного контраста, содержащего микроскопические газовые пузырьки. Отличается повышенной точностью диагностики.
  3. Тканевая, или 2-я гармоника (THI) – технология с улучшенным качеством и контрастностью изображения, показана пациентам с избыточным весом.
  4. Соноэластография – УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.
  5. Ультразвуковая томография – методика, аналогичная по информативности КТ и МРТ, но при этом совершенно безвредная. Собирает объёмную информацию с последующей компьютерной обработкой изображения в трёх плоскостях.
  6. 4 D– узи – технология с возможностью навигации внутри сосудов и протоков, так называемый «взгляд изнутри». По качеству изображения похоже на эндоскопическое исследование.

Источник: http://www.rumex.ru/information/Istorija-razvitija-ul%27trazvukovoj-diagnostiki-123

История

История развития ультразвуковых технологий в науке и производстве
Для развития и распространения ультразвуковых технологий 24 мая 1994 года в Бийском технологическом институте решением ректора была создана научно-исследовательская лаборатория акустических процессов и аппаратов.

Руководство лабораторией было поручено доктору технических наук, профессору Хмелеву В.Н.

В составе лаборатории были объединены сотрудники Бийского технологического института, ФГУП ФНПЦ «Алтай» (ныне ОАО ФНПЦ «Алтай»), НПАП «Алтаймедприбор», работавшие ранее над проблемами применения ультразвуковых колебаний в оборонной промышленности и медицине.

Основная деятельность лаборатории превратившейся в последние годы в центр ультразвуковых технологий (объединяющий несколько лабораторий и малых инновационных предприятий) направлена на применении существующих и создании новых ультразвуковых аппаратов технологий для современных производств и потребителей за счет разработки и создания новых схемных и конструктивных решений генераторов электрических колебаний ультразвуковой частоты, ультразвуковых колебательных систем, рабочих инструментов; создания серии многофункциональных и специализированных аппаратов, обеспечивающих потребности современных производств и разработки методических рекомендаций по использованию ультразвуковых технологий в условиях малых и средних производств, сельского хозяйства, бытового обслуживания и при индивидуальном применении в домашнем хозяйстве.

Мы разрабатываем, проектируем и изготавливаем технологическое оборудование для интенсификации различных технологических процессов

Коллектив центра ультразвуковых технологий принимал участие в различных международных проектах:

  • разработка и созданию аппарата ультразвуковой липосакции совместно с немецкой фирмой «ToMetric AG» (Германия);
  • исследование и разработка оборудования для процессов ультразвукового распыления совместно с фирмой SUDO Premium Engeniring LTD (Республика Корея) для фирмы Samsung (Республика Корея);
  • исследование и передача оборудования для ускорения процесса сушки белья в стиральных машинах барабанного типа для фирмы LG (Республика Корея);
  • исследование и разработка макетного образца для ускорения процесса сушки пищевых продуктов для фирмы Pharmatech A.S. (Норвегия);
  • исследование и разработка макетного образца для ускорения процесса сушки корня женьшеня для фирмы Dooson (Республика Корея).

Помимо зарубежных фирм коллектив успешно сотрудничает с отечественными фирмами и организациями по созданию новых аппаратов и технологий:.

  • ультразвукового бурения грунта при исследовании внеземных объектов (для института космических исследований РАН);
  • разделения и получения новых наноуглеродных материалов (ООО «Оксиал.Ру, ООО «Уральский центр нанотехнологий», ООО «Плазмохимические технологии», Тамбовский госуниверситет, ЗАО «Концерн «Наноиндустрия», ООО «МЦ РОСНАНО );
  • производства высокооктановых бензинов и создания новых технологий ( Омский НПЗ, ООО ВолгоУралНИПИгаз НТЦ «Промконсалтинг», ОАО «ФНПЦ «НИИ прикладной химии», ОАО «Татнефть» имени В.Д. Шашина, ООО «Гаспромдобыча Ноябрьск»);
  • производства 7200 трубочек детектора (STRAW)для эксперимента NA62 (CERN) (Объединенный институт Ядерных Исследований).

Передовые разработки позволил коллективу получить ряд премий и наград:

  • в 2004 году премию Алтайского края в области науки и техники (3 человека);
  • в 2005 году премию Правительства Российской Федерации в области науки и техники для молодых ученых (5 человек);
  • в 2009 году премию Алтайского края в области науки и техники (1 человек);
  • в 2011 году премию Алтайского края в области науки и техники (1 человек);
  • в 2012 году премию Алтайского края в области науки и техники (8 человек).

Сотрудники лаборатории регулярно получают благодарности и почетные грамоты администрации Алтайского края, награды на различных выставках и научных конференциях, становятся лауреатами всероссийских конкурсов. Подробную информацию о наградах можно найти в разделе Награды.

Помимо научно-исследовательской и опытно конструкторской работы материально-техническая база лаборатории используется в учебном процессе Бийского технологического института.

На базе лаборатории проводятся практические и лабораторные занятия по курсам «Ультразвуковые технологии», «Электроника в приборостроении», «Акустоэлектроника», «Применение микропроцессоров в технике и технологиях», «Программное обеспечение измерительных процессов», «Методы и средства измерений» и «Аппаратные интерфейсы информационных систем».

Ежегодно на базе лаборатории успешно защищаются 10-15 дипломных работ, посвященных различным аспектам разработки и использовании ультразвуковых технологий и реализующих их аппаратов.

На сегодняшний день наш коллектив это: молодой динамично развивающийся коллектив включающий 2 доктора технических наук, 10 кандидатов технических наук и более 20 высококвалифицированных инженеров способных решать широкий круг задач связанных с ультразвуковыми технологиями и оборудованием для его реализации

Более подробную информацию о коллективе разработчиков смотрите в разделе «Сотрудники».

© 2019, ООО «Центр ультразвуковых технологий»
Любое использование материалов сайта возможно лишь с разрешения правообладателя и только при наличии ссылки на www.u-sonic.ru

Создание сайта – Mitra

Источник: http://u-sonic.ru/about/history/

ovdmitjb

Add comment