Kievuz

Кривые на плоскости

Кривые на плоскости

Кривые на плоскости

Кривая линия – это множество точек пространства, координаты которых являются функциями одной переменной. Термин «кривая» в разных разделах математики определяется по-разному.

В различных областях науки кривую рассматривают как траекторию, описанную движущей точкой, как проекцию другой кривой, как линию пересечения двух поверхностей, как множество точек, обладающих каким-либо общим для всех их свойством, как все непрямые и не ломаные линии и т.д.

В начертательной геометрии кривую линию рассматривают либо как закономерную или случайную траекторию точки, которая движется с изменением направления, либо как составной элемент – линию пересечения двух поверхностей (рис. 1,). На рис. 1 показана кривая как результат пересечения плоскости с цилиндрической поверхностью. Безусловно, эта кривая плоская.

рис 1.

Проекции незакономерной кривой строятся по проекциям дискретного (прерывистого) ряда ее точек. Кривая может иметь одну ветвь. Чертеж такой кривой будет вполне обратимым при наличии двух проекций.

Если же у пространственной кривой случайного вида две или более ветвей, то для обратимости чертежа задают проекции одной или более точек на кривой. Число точек зависит от числа ветвей – оно равно числу ветвей минус один.

Эти точки устанавливают проекционную связь между проекциями ветвей кривой.

Если закон перемещения точки может быть выражен аналитически в виде уравнения, то образующаяся при этом линия называется закономерной, в противном случае – незакономерной, или графической.

Для более полного представления о кривизне плоской кривой для начала введём понятие векторной функции скалярного аргумента.

Определение 1. Если каждому значению независимого переменного tTR , называемого далее скалярным аргументом, поставить в соответствие единственный вектор r(t), то r(t) называют вектор-функцией скалярного аргумента. Вектор r(t) с началом в фиксированной точке O называют радиус-вектором.

Пусть в геометрическом (трёхмерном) пространстве задана прямоугольная декартова система координат Oxyz с ортонормированным базисом i, j, k. Тогда представление

r(t) = x(t)i + y(t)j + z(t)k

является разложением радиус-вектора r(t) в этом базисе, причем x(t), y(t), z(t) – действительные функции одного действительного переменного t с общей областью определения TR , называемые координатными функциями вектор-функции r(t).

Введём теперь термин «кривой». Его строгое определение связано с понятием вектор-функции r(t), которую будем считать непрерывной на отрезке [a, b] . Пусть в трёхмерном пространстве R3 задана прямоугольная декартова система координат Oxyz с ортонормированным базисом {i, j, k}.

Определение 2. Множество ГR3 точек, заданных радиус-векторм r(t) = x(t)i + y(t)j + z(t)k, t[a, b] соответствующим непрерывной на отрезке [a, b] вектор-функции r(t) называют непрерывной кривой, или просто кривой, а аргумент t – параметром кривой.

При фиксированном значении t = t0 [a, b] параметра значения x(t0), y(t0), z(t0) являются координатами точки кривой. Поэтому одна и та же кривая может иметь как векторное так и координатное представление

Г = {r R3 : r = r(t), t[a, b] },

Г = {(x; y; z) R3 : x = x(t), y = y(t), z = z(t), t[a, b] }

Заданную таким образом кривую называют годографом вектор-функции r(t), поскольку именно такую кривую описывает в пространстве конец вектора при изменении параметра t.

Кривую можно также представить как линию пересечения двух поверхностей с уравнениями F1(x, y, z) = 0, F2(x, y, z) = 0. Выбрав за параметр одну из координат, можно через него попытаться выразить из этой системы уравнений остальные координаты. Если это удастся сделать, то можно будет записать

Г = {(x; y; z) R3 : x = x(t), y = y(t), z = z(t), t[c, d] }.

Одной и той же точке кривой могут соответствовать различные значения параметра t. Такие точки кривой называют её кратными точками.

Начальной и конечной точками кривой называются точки с радиус-векторами r(a) и r(b) соответственно. Если конечная точка кривой совпадает с её начальной точкой, то кривую называют замкнутой.

Замкнутую кривую, не имеющую кратных точек при t(a, b) называют простым замкнутым контуром.

Определение 3. Кривую, лежащую в некоторой плоскости называют плоской.

Если эта плоскость выбрана за координатную плоскость xOy, то координатное представление плоской кривой Г имеет вид:

Г = {(x; y; z) R3 : x = x(t), y = y(t), z = z(t), t[a, b] }.

причём равенство z=0 обычно опускают и пишут

Г = {(x; y) R2 : x = x(t), y = y(t), t[a, b] }.

График непрерывной на отрезке [c, d] функции f(x) является плоской кривой с координатным представлением Г = {(x; y) R2 : x = x, y = f(x), x[c, d] }.

В этом случае роль параметра выполняет аргумент x . Плоская кривая является годографом радиус-вектора r(t) = x(t)i + y(t)j или r(x) = xi + f(x)j соответственно.

Длина дуги и её производная.

Дадим определение длины дуги и найдём её дифференциал.

Пусть дуга кривой M0M (рис. 1) есть график функции y=f(x), определённой на интервале (a ,b). Определим длину дуги кривой.

Возьмём на кривой АВ точки M0, M1, M2, … , Mi-1, Mi…, Mn-1, M.

Соединив взятые точки отрезками, получим ломаную линию M0 M1M2… Mi-1 Mi…Mn-1M, вписанную в дугу M0 M. Обозначим длину этой ломаной линии через Pn.

Длиной дуги M0M называется предел (обозначим его через s), к которому стремится длина ломаной при стремлении к нулю наибольшей длин отрезков ломанной Mi-1 Mi , если этот предел существует и не зависит от выбора точек ломаной M0 M1M2… Mi-1 Mi…Mn-1M .

Найдём выражение дифференциала дуги.

Пусть имеется на плоскости кривая, заданная уравнением y=f(x). Пусть M0(x0, y0)- некоторая фиксированная точка кривой. Обозначим через s длину

дуги M0M (рис.3). При изменении абсциссы x точки М длина s дуги будет меняться, т. е. s есть функция x. Найдём производную s по x.

Дадим x приращение x. Тогда дуга s получит приращение s = дл. MM1. Пусть – хорда, стягивающая эту дугу. Для того чтобы найти , поступим следующим образом:

Из MM1Q находим = (x)2 +(y)2. Умножим и разделим левую часть наs2:

Разделим все члены равенства на x2:

Найдём предел левой и правой частей при x0. Учитывая, что и , получим

Для дифференциала дуги получим следующее выражение:

или

Мы получили выражение дифференциала дуги для того случая, когда кривая задана уравнением y=f(x). Но эта же формула сохраняется и в том случае, когда кривая задана параметрически:

и выражение принимает вид: .

Кривизна

Первая производная функции даёт нам простейшую характеристику линии y=f(x), а именно её направление. Вторая производная тесно связана с другой количественной характеристикой этой линии, с так называемой кривизной, устанавливающей меру изогнутости или искривлённости линии.

Пусть мы имеем кривую, которая не пересекает сама себя и имеет определённую касательную в каждой точке.

Проведём касательные к кривой в каких-нибудь двух её точках А и В и обозначим через угол, образованный этими касательными, или – точнее – угол поворота касательной при переходе от точки А к точке В (рис. 4). Этот угол называется углом смежности.

Угол смежности в некоторой степени даёт представление о степени изогнутости дуги. У двух дуг, имеющих одинаковую длину, больше изогнута та, у которой угол смежности больше (рис. 5,4).

рис. 4 рис. 5

Полной характеристикой изогнутости кривой будет отношение угла смежности к длине соответствующей дуги.

Определение 4. Средней кривизной Кср дуги АВ называется отношение соответствующего угла смежности к длине дуги:

Для одной и той же кривой средняя кривизна её различных частей (дуг) может быть различной; так, например, для кривой (см. рис. 6) средняя кривизна дуги АВ не равна средней кривизне дуги А1В1 , хотя длины этих дуг равны между собой.

Отметим, что вблизи различных точек кривая искривлена по-разному. Для того чтобы охарактеризовать степень искривлённости данной линии в непосредственной близости к данной точке А, введём понятие кривизны в данной точке.

Определение5. Кривизной Ка линии в данной точке А называется предел средней кривизны дуги АВ, когда длина этой дуги стремится к нулю:

Page 3

Выведем формулу для вычисления кривизны данной линии в любой её точке M(x, y). При этом будем предполагать, что кривая задана в декартовой системе координат уравнением вида y=f(x) и что функция имеет непрерывную вторую производную.

Проведём касательные к кривой в точках M и M1 с абсциссами x и x+x и обозначим через и + углы наклона этих касательных

(рис.6).

Длину дуги M0M отсчитываемую от некоторой постоянной точки M0, обозначим через s; тогда s = M0M1 – M0M, аs = MM1. Как видно из (рис. 7), угол смежности, соответствующий дуге MM1 равен абсолютной величине разности углов и +, то есть равен .

Согласно определению средней кривизны кривой на участке MM1 имеем

.

Чтобы получить кривизну в точке М, нужно найти предел полученного выражения при условии, что длина дуги MM1 стремится к нулю:

Так как величины и s зависят от x, то, следовательно, можно рассматривать как функцию от s. Можно считать, что эта функция задана параметрически с помощью параметра x. Тогда

Для вычисления воспользуемся формулой дифференцирования функции, заданной параметрически:

.

Чтобы выразить производную через функцию y=f(x), заметим, что и, следовательно .

Дифференцируя по x последнее равенство, получаем

.

И так как , то

, и окончательно, так как , получаем

.

Следовательно, в любой точке кривой, где существует и непрерывна вторая производная, можно вычислить кривизну по формулам.

Page 4

Определение 6. Величина R, обратная кривизне К линии в данной точке М, называется радиусом кривизны этой линии в рассматриваемой точке: R = 1/K, или

Построим в точке М нормаль к кривой (рис. 8), направленную в сторону вогнутости кривой, и отложим на этой нормали отрезок МС, равный радиусу R кривизны кривой в точке М. рис. 8

Точка С называется центром кривизны данной кривой с центром в точке С (проходящий через точку М) называется кругом кривизны данной кривой в точке М.

Из определения круга кривизны следует, что в данной точке кривизна кривой и кривизна круга кривизны равны между собой. Выведем формулы, определяющие координаты центра кривизны.

Пусть кривая задана уравнением y=f(x). Зафиксируем на кривой точку M(x, y) и определим координаты и центра кривизны, соответствующего этой точке (рис. 9).Для этого напишем уравнение нормали к кривой в точке М:

Так как точка C(, ) лежит на нормали, то её координаты должны удовлетворять уравнению . рис. 9

Далее, точка C(, ) находится от точки М на расстоянии, равном радиусу кривизны R:

Решив совместно уравнения * определим , :

и так как , то

Чтобы решить вопрос о том, верхние или нижние знаки сле6дует брать в последних формулах, нужно рассмотреть случай y!!>0 и y!!0 , то в этой точке кривая вогнута и, следовательно, >y (рис. 9) и поэтому следует брать нижние знаки. Учитывая, что в этом случае y!!= y!!, формулы координат центра запишем в следующем виде:

(1)

Аналогично можно показать, что формулы будут справедливы и в случае y!!

Перейти к загрузке файла

Парабола – кривая второго порядка, прямая пересекает ее в двух точках (рис.12). При этом парабола может быть определена как:

  • -множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN – директрисы параболы;
  • -линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса;
  • -в прямоугольной системе координат 0ху с началом в вершине параболы и осью направленной по оси параболы уравнение параболы имеет так называемый канонический вид 

y2=2px,где р (фокальный параметр) – расстояние от фокуса до директрисы.рис 12.

Гипербола

Гипербола – множество точек М плоскости (рис.13) разность (по абсолютной величине) расстояний F1M и F2M, которых до двух определенных точек F1 и F2 этой плоскости (фокусов гиперболы) постоянна:F1M – F2M=2а

Источник: https://vuzlit.ru/923509/krivye_ploskosti

Кривые на плоскости (стр. 1 из 3)

Кривые на плоскости

Реферат по аналитической геометрии

Тема: Кривые на плоскости

Студентки группы ОАП 10-1:

Петренко Лидии

Линия – общая часть двух смежных областей поверхности. Движущаяся точка описывает при своем движении некоторую линию. В аналитической геометрии на плоскости линии выражаются уравнениями между координатами их точек.

В прямоугольной системе координат линии разделяются в зависимости от вида уравнений. Если уравнение линии имеет вид: F(x; y)=0, где F(x; y)- многочлен n-ой степени относительно х, у то линия называется алгебраической линией ого n-го порядка. Линия 1-го порядка – прямая.

Конические сечения относятся к линиям 2-го порядка и т.д.

Спирали

Спирали (франц., единственное число spirale, от лат. spira, греч. speira — виток), плоские кривые линии, бесчисленное множество раз обходящие некоторую точку, с каждым обходом приближаясь к ней или с каждым обходом удаляясь от неё.

Если выбрать точку за полюс полярной системы координат, то полярное уравнение спирали

r = f(j) таково, что f(j + 2p) >f(j) или f(j + 2p) < f(j) при всех j. В частности, спирали получаются, если f(j) — монотонно возрастающая или убывающая положительная функция.

Наиболее простой вид имеет уравнение архимедовой спирали: r = аj, изученной древнегреческим математиком Архимедом (3 в. до н. э.) в связи с задачами трисекции угла и квадратуры круга в сочинении “О спиралях”.

Из других спиралей практическое значение имеет спираль Корню (или клотоида), применяемая при графическом решении некоторых задач дифракции. Параметрическое уравнение этой С. имеет вид:

.

Спираль Корню является идеальной переходной кривой для закругления железнодорожного пути, так как её радиус кривизны возрастает пропорционально длине дуги. Спиралями являются также эвольвенты замкнутых кривых, например эвольвента окружности.

Названия некоторым спиралям даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например:

· параболическая спираль (а – r)2 = bj,

· гиперболическая спираль: r = а/j.

· Жезл: r2 = a/j

· si-ci-cпираль, параметрические уравнения которой имеют вид:

,

[si (t) и ci (t) —интегральный синус и интегральный косинус]. Кривизна si-ci-cпирали изменяется с длиной дуги по закону показательной функции. Такие спирали применяют в качестве профиля для лекал.

Напоминает спираль кривая , называемая кохлеоидой. Она бесконечное множество раз проходит через полюс, причём каждый следующий завиток лежит в предыдущем.

Спирали встречаются также при рассмотрении особых точек в теории дифференциальных уравнений

Спиралями иногда называют также пространственные кривые, делающие бесконечно много оборотов вокруг некоторой оси, например винтовая линия.

Кардиоиды

Кардиоида (греч. καρδία— сердце, греч. εἶδος— вид) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.

Кардиоида является частным случаем улитки Паскаля, эпициклоиды и синусоидальной спирали.

Так же можно сказать, что Кардиоида-это плоская кривая, описываемая точкой М окружности, которая извне касается неподвижной окружности того же радиуса и катится по ней без скольжения.

Принадлежит к эпициклоидам (плоская кривая, описываемая точкой окружности, которая извне касается неподвижной окружности и катится по ней без скольжения, к ним относятся кардиоиды, циклоиды, гипоциклоиды).

Является алгебраической кривой второго порядка.

Уравнения кардиоиды:

· В прямоугольной системе координат:

· В прямоугольной системе координат (параметрическая запись):

x = 2rcost (1 + cost)

y = 2rsint (1 + cost)

· В полярной системе координат:

· Длина дуги одного витка кардиоиды, заданной формулой:

равна:

s = 8a.

· Площадь фигуры, ограниченной кардиоидой, заданной формулой:

равна: .

Свойства кардиоиды:

1. Касательная в произвольной точке кардиоиды проходит через точку окружности производящего круга, диаметрально противоположной точке касания кругов, а нормаль — через точку их касания.2. Угол, составляемый касательной к кардиоиде с радиус-вектором точки касания, равен половине угла, образуемого этим радиус-вектором с полярной осью.3. Касательные к кардиоиде, проведенные в концах хорды, проходящей через полюс, взаимно перпендикулярны. Циклоиды

Циклоида (от греч. κυκλοειδής— кругообразный) — плоская трансцендентная кривая. Циклоида определяется кинематически как траектория фиксированной точки производящей окружности радиуса r, катящейся без скольжения по прямой.

Свойства:

1. Циклоида — периодическая функция по оси абсцисс, с периодом 2πr. За границы периода удобно принять особые точки (точки возврата) вида t = 2πk, где k — произвольное целое число.

2. Для проведения касательной к циклоиде в произвольной её точке A достаточно соединить эту точку с верхней точкой производящей окружности. Соединив A с нижней точкой производящей окружности, мы получим нормаль.

3. Длина арки циклоиды равна 8r. Это свойство открыл Кристофер Рен (1658).

4. Площадь под каждой аркой циклоиды втрое больше, чем площадь порождающего круга. Торричелли сообщил, что этот факт Галилей открыл экспериментально: сравнил вес пластинок с кругом и с аркой циклоиды.

5. Радиус кривизны у первой арки циклоиды равен .

6. «Перевёрнутая» циклоида является кривой скорейшего спуска (брахистохроной). Более того, она имеет также свойство таутохронности: тяжёлое тело, помещённое в любую точку арки циклоиды, достигает горизонтали за одно и то же время.

7. Период колебаний материальной точки, скользящей по перевёрнутой циклоиде, не зависит от амплитуды, этот факт был использован Гюйгенсом для создания точных механических часов.

8. Эволюта циклоиды является циклоидой, конгруэнтной исходной, а именно — параллельно сдвинутой так, что вершины переходят в «острия».

9. Детали машин, которые совершают одновременно равномерное вращательное и поступательное движение, описывают циклоидальные кривые (циклоида, эпициклоида, гипоциклоида, трохоида, астроида) (ср. построение лемнискаты Бернулли).

Уравнения

Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса r.

· Циклоида описывается параметрически:

x = rtrsint,

y = rrcost.

· Уравнение в декартовой прямоугольной системе координат:

Циклоида может быть получена как решение дифференциального уравнения:

Астроида

Астроида — плоская кривая, описываемая точкой M окружности радиуса r, катящейся по внутренней стороне окружности радиуса R = 4r. Иначе говоря, астроида — это гипоциклоида с модулем m = 4.

Так же можно сказать, что Астроида- это плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Является алгебраической кривой шестого порядка.

Свойства

1. Имеются четыре каспа.

2. Длина дуги от точки с 0 до

3.

4. Длина всей кривой 6R.

5. Радиус кривизны:

6.

7. Площадь, ограниченная кривой:

8.

9. Астроида является огибающей семейства отрезков постоянной длины, концы которых расположены на двух взаимно перпендикулярных прямых.

10. Астроида является алгебраической кривой 6-го порядка.

Кардиоида

Кардио́ида (греч. καρδία — сердце, греч. εἶδος — вид) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.

Кардиоида является частным случаем улитки Паскаля, эпициклоиды и синусоидальной спирали.

Уравнения

  • В прямоугольных координатах:
  • В прямоугольных  координатах (параметрическая запись):

Свойства

  • Кардиоида — алгебраическая кривая четвёртого порядка.
  • Кардиоида имеет один касп.
  • Длина дуги одного витка кардиоиды, заданной формулой:
  • Площадь фигуры, ограниченной кардиоидой, заданной формулой:

Циклоида

Цикло́ида (от греч. κυκλοειδής — круглый) — плоская трансцендентная кривая. Циклоида определяется кинематически как траектория фиксированной точки производящей окружности радиуса r, катящейся без скольжения по прямой.

Исторический очерк

Первым из учёных обратил внимание на циклоиду Николай Кузанский в XV веке, но серьёзное исследование этой кривой началось только в XVII веке.

Название циклоида придумал Галилей (во Франции эту кривую сначала называли рулеттой). Содержательное исследование циклоиды провёл современник Галилея Мерсенн.

Среди трансцендентных кривых, то есть кривых, уравнение которых не может быть записано в виде многочлена от x,y, циклоида — первая из исследуемых.

https://www.youtube.com/watch?v=wDW5JwrAQlE

Паскаль писал о циклоиде:

Рулетта является линией столь обычной, что после прямой и окружности нет более часто встречающейся линии; она так часто вычерчивается перед глазами каждого, что надо удивляться тому, как не рассмотрели её древние… ибо это не что иное, как путь, описываемый в воздухе гвоздём колеса.

Новая кривая быстро завоевала популярность и подверглась глубокому анализу, в котором участвовали Декарт, Ферма, Ньютон, Лейбниц, братья Бернулли и другие корифеи науки XVII—XVIII веков. На циклоиде активно оттачивались методы появившегося в те годы математического анализа.

Тот факт, что аналитическое исследование циклоиды оказалось столь же успешным, как и анализ алгебраических кривых, произвёл большое впечатление и стал важным аргументом в пользу «уравнения в правах» алгебраических и трансцендентных кривых.

Астроида

Источник: http://stud24.ru/mathematic/krivye-na-ploskosti/9674-23003-page1.html

Уравнения:

Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса r.

· Циклоида описывается параметрически:

x = rtrsint,

y = rrcost.

· Уравнение в декартовой прямоугольной системе координат:

Циклоида может быть получена как решение дифференциального уравнения:

Астроида

Астроида (рис. 5)— плоская кривая, описываемая точкой M окружности радиуса r, катящейся по внутренней стороне окружности радиуса R = 4r. Иначе говоря, астроида — это гипоциклоида с модулем m = 4.

Так же можно сказать, что Астроида- это плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Является алгебраической кривой шестого порядка.

Свойства от овала Кассини:

· Лемниската — кривая четвёртого порядка;

· Она симметрична относительно двойной точки — середины отрезка между фокусами;

· Кривая имеет 2 максимума и 2 минимума. Их координаты:

· Расстояние от максимума до минимума, находящихся по одну сторону от серединного перпендикуляра отрезка между фокусами равно расстоянию от максимума (или от минимума) до двойной точки;

· Лемнискату описывает окружность радиуса , поэтому иногда в уравнениях производят эту замену.

Свойства от синусоидальной спирали:

· Точка, где лемниската пересекает саму себя, называется узловой или двойной точкой;

· Касательные в двойной точке составляют с отрезком F1F2 углы ;

· Угол μ, составляемый касательной в произвольной точке кривой с радиус-вектором точки касания равен ;

· Касательные в точках пересечения кривой и хорды, проходящей через двойную точку, параллельны друг другу;

· Инверсия относительно окружности с центром в двойной точке, переводит лемнискату Бернулли в равнобочную гиперболу;

· Радиус кривизны лемнискаты есть ;

Есть частный случай формулы радиуса кривизны синусоидальной спирали:

при m = 2,

однако, легко вывести и по определению.

Уравнение лемнискаты в полярной системе:

Формулы перехода к полярной системе координат:

Выражаем :

Подставляем в уравнение лемнискаты и выражаем x и y:

—- это параметрическое уравнение относительно . Проведя некоторые тригонометрические преобразования, можно получить уравнение относительно , указанное выше в разделе Уравнения.

Формула радиуса кривизны кривой, заданной параметрически:

Находим производные по :

Подставляем в формулу радиуса:

Возвращаемся к уравнению лемнискаты:

Подставляем это выражение в полученную формулу радиуса и получаем:

· Натуральное уравнение кривой имеет вид

· Подерой лемнискаты является синусоидальная спираль

· Лемниската сама является подерой равносторонней гиперболы.

Собственные свойства:

Гравитационное свойство лемнискаты

· Кривая является геометрическим местом точек, симметричных с центром равносторонней гиперболы относительно её касательных;

· Отрезок биссектрисы угла между фокальными радиус-векторами точки лемнискаты равен отрезку от центра лемнискаты до пересечения её оси с этой биссектрисой;

· Материальная точка, движущаяся по кривой под действием однородного гравитационного поля, пробегает дугу за то же время, что и соответствующую хорду. При этом ось лемнискаты составляет угол с вектором напряжённости поля, а центр лемнискаты совпадает с исходным положением движущейся точки;

· Площадь полярного сектора , при :

· В частности, площадь каждой петли , то есть площадь, ограниченная кривой, равна площади квадрата со стороной ;

· Перпендикуляр, опущенный из фокуса лемнискаты на радиус-вектор какой-либо её точки, делит площадь соответствующего сектора пополам;

· Длина дуги лемнискаты между точками и выражается эллиптическим интегралом рода:

где

· В частности, длина всей лемнискаты

Источник: http://kursak.net/krivye-na-ploskosti/

ovdmitjb

Add comment