Kievuz

Окислительно – восстановительные реакции (ОВР)

Содержание

1.4.8. Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее

Окислительно – восстановительные реакции (ОВР)

Окислительно-восстановительные реакции (ОВР) — такие реакции, которые протекают с изменением степеней окисления элементов.

Изменение степеней окисления происходит из-за полной или частичной передачи электронов от одних атомов к другим:

Поскольку электроны имеют заряд «-1» , следовательно, понижение степени окисления атома химического элемента происходит в результате приобретения им дополнительных электронов.

Процесс приобретения атомом дополнительных электронов называется восстановлением:

Вещество, которое содержит восстанавливающиеся атомы, называют окислителем.

В примере выше окислителем является азотная кислота HNO3.

Аналогично повышение степени окисления происходит в том случае, когда атом элемента теряет некоторое количество своих электронов. Процесс потери атомом электронов называют окислением:

Химическое вещество, которое содержит окисляющиеся атомы, называют восстановителем.  В указанном примере восстановителем является фосфин PH3.

Межмолекулярные ОВР

Межмолекулярные окислительно-восстановительные реакции — такие реакции, в которых атомы окислителя и атомы восстановителя находятся в разных веществах. Например:

Внутримолекулярные ОВР

Внутримолекулярные окислительно-восстановительные реакции — такие реакции,  в которых атомы восстановителя и атомы окислителя содержатся в одном веществе. Например:

Реакции диспропорционирования

Реакциями диспропорционирования называют такие реакции, в которых атомы одного химического элемента, являются окислителями и восстановителями и при этом находятся в одном веществе. Такие реакции также называют реакциями самоокисления-самовосстановления. Например, к таким реакциям относятся все реакции взаимодействия галогенов с растворами щелочей:

Метод электронного баланса

Метод электронного баланса — метод расстановки коэффициентов в окислительно-восстановительной реакции, основанный на том, что количество электронов, отданных восстановителем, равно числу электронов, полученных окислителем.

Алгоритм расстановки коэффициентов данным методом выглядит следующим образом:

1) Следует записать схему реакции, указав формулы всех реагентов и продуктов. Например, при взаимодействии концентрированной серной кислоты с фосфором образуется фосфорная кислота, диоксид серы и вода:

2) Далее следует расставить все степени окисления и найти те элементы, у которых изменилось значение степени окисления.

3) После расстановки степеней окисления химических элементов находят те элементы, которые изменили свои степени окисления. Далее записывают уравнения полуреакций окисления и восстановления. В нашем случае они имеют вид:

4) Поскольку количество отдаваемых электронов восстановителем должно быть равно количеству принимаемых электронов окислителем, далее следует подобрать дополнительные множители к записанным полуреакциям:

5) Подобранные к полуреакциям множители переносятся в схему реакции:

6) Отталкиваясь от тех коэффициентов, которые уже известны из электронного баланса, оставшиеся коэффициенты расставляют методом подбора:

Примечание:Следует отметить, что если в одной структурной единице какого-либо участника реакции содержится не один атом химического элемента, изменившего степень окисления, а 2 или больше, то это обязательно следует учитывать при записи уравнений полуреакций. Обратите внимание на составление электронного баланса для реакции горения этана в кислороде:Как можно видеть в первом уравнении полуреакции, мы учли то, что в левой части уравнения уже сразу содержится не менее двух атомов углерода, поскольку одна формульная единица C2H6 содержит два атома C. По этой причине мы поставили коэффициент 2 перед атомами углерода в левой и правой частях полуреакции, а также удвоили количество «уходящих» электронов (14 вместо 7-ми).Во второй полуреакции мы также учли, что в левой части уравнения реакции не может быть менее двух атомов кислорода, поскольку 2 атома  O содержатся в одной молекуле O2. Однако как вы могли заметить, в случае простого вещества кислорода мы не стали писать 2O, а записали O2.  Также следует поступать и в случае других простых молекулярных веществ, например, O2, F2, Cl2, N2, H2 и т.д.

Очевидно, что электронный баланс — не самая сложная часть в процессе составления уравнения окислительно-восстановительной реакции. Часто трудности возникают в том, какие продукты записывать в правой части схемы реакции.

Для того чтобы записывать уравнения ОВР, не нужно пытаться выучить все возможные реакции, тем более, что это невозможно в принципе. Надо учиться их составлять.

В первую очередь, что действительно следует выучить, так это формы существования окислителей и восстановителей до и после реакции в зависимости от среды раствора. Среда раствора определяется по наличию или отсутствию среди реагентов кислоты или щелочи.

Также всегда нужно помнить, что в качестве возможных продуктов не следует писать формулы веществ, реагирующих с остальными продуктами и/или со средой. Так, например, в продуктах не может быть кислоты, если изначально среда раствора щелочная и наоборот.

В общем, говоря более простыми словами, все продукты должны быть химически «безразличны» друг к другу, а также к среде раствора (исключение — электролиз).

Ниже представлены основные окислительно-восстановительные переходы окислителей и восстановителей в зависимости от среды. Во многих случаях указаны не целые формулы веществ, а формулы ионов, входящих в их состав.

В таком случае для записи уравнения реакции в молекулярном виде формулу иона требуется дополнить противоионами.

Катионы металлов, чаще всего, объединяют с кислотными остатками, если среда кислая, а анионы с катионами металлов (если среда щелочная) или водорода, если среда кислая или нейтральная.

Коррозия металлов и способы защиты от нее

Коррозией металла называют процесс его самопроизвольного разрушения в результате контакта с окружающей средой.

Коррозия бывает химическая и электрохимическая.

Химическая коррозия — вид коррозии, при котором металл разрушается из-за его взаимодействия с газами или жидкостями, не проводящими электрический ток.

Так, например, к химической коррозии относится образование окалины при взаимодействии железа с кислородом при высоких температурах, а также разрушение металлического оборудования под действием нефтяных фракций, содержащих сернистые соединения.

Электрохимической коррозией называют разрушение металла в растворе электролита вследствие возникновения в данной системе электрических токов.

Электрические токи, способствующие коррозии, возникают в тех случаях, когда в растворе электролита изделие из металла контактирует с другим менее активным металлом.

Также такие токи могут появляться из-за химической неоднородности металлического материала, из которого выполнено изделие.

Так, например, из-за электрохимической коррозии страдают подводные части судов, паровые котлы, трубопроводы, металлические конструкции в почве и т.д.

Способы защиты металлов от коррозии

1) Контроль условий, в которых эксплуатируется металлическое оборудование. Например, хранение и использование изделий из стали на открытом воздухе нежелательно и этого, по возможности, следует избегать. Эксплуатация металлического оборудования в помещениях с низкой влажностью существенно продлит его срок службы.

2) Создание защитных покрытий, изолирующих металлоконструкцию от контакта с окружающей средой. Среди таких покрытий различают:

— неметаллические покрытия — всевозможные краски, лаки, эмали, а также пленки из таких полимеров, как полиэтилен, поливинилхлорид и т.д.;

— химические покрытия (оксидные, нитридные, фосфатные и т.д.) (Такие покрытия получают специальной химической обработкой поверхности металла.);

— металлические покрытия.

Металлические покрытия получают нанесением на защищаемую металлическую конструкцию тонкого слоя другого металла (чаще всего с помощью процесса электролиза).

При этом, если в качестве покрытия используется менее активный металл, то такое покрытие будет защищать металлоконструкцию только при условии его целостности. В случае, если целостность такого покрытия будет нарушена, защищаемый металл будет ускоренно корродировать.

Также широко используется покрытие металлоконструкций более активным металлом. Например, распространено использование так называемого оцинкованного железа.

Такое покрытие защищает металлические объекты даже при нарушении его целостности, поскольку пока практически полностью не исчезнет слой покрытия из более активного металла, коррозия металла, из которого сделан защищаемый объект, не начнется.

3) Электрохимические методы защиты:

— катодная защита — вид защиты, при котором металлический объект подключается с помощью проводников к катоду внешнего источника тока либо же приводится в контакт с более активным металлом.

Частный случай катодной защиты, при котором металлическая конструкция приводится в контакт с более активным металлом, называют протекторной защитой.

4) Изменение химических свойств среды, в которой эксплуатируется металлическое изделие, в частности:

— добавление в среду веществ, замедляющих коррозию (ингибиторов коррозии).

— дегазация среды (удаление растворенных в ней газов, в частности, кислорода). Например, такой метод работает для защиты от ржавления железа, поскольку в процессе ржавления железа активное участие принимает не только вода, но и кислород:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/okislitelno-vosstanovitelnye-reakcii-i-korrozija

Окислительно-восстановительные реакции

Окислительно – восстановительные реакции (ОВР)

Реакции, которые называют окислительно-восстановительными (ОВР), происходят с изменением степеней окисления атомов, находящихся в составе молекул реагентов. Эти изменения происходят в связи с переходом электронов от атомов одного элемента к другому.

Процессы, протекающие в природе и осуществляемые человеком, в большинстве своём представляют ОВР. Такие важнейшие процессы, как дыхание, обмен веществ, фотосинтез (6CO2+H2O = C6H12O6 + 6O2), — всё это ОВР.

  • Окислители и восстановители: характеристика
  • Вещества с двойственной природой
  • Классификация ОВР: примеры
  • Токовые и бестоковые ОВР
  • Метод электронного баланса ОВР в химии
  • Примеры заданий на составление электронного баланса
  • Влияние реакционной среды

В промышленности с помощью ОВР получают аммиак, серную, соляную кислоты и многое другое.

Восстановление металлов из руд — фактически основа всей металлургической промышленности — тоже окислительно-восстановительные процессы. Например, реакция получения железа из гематита: 2Fe2O3 + 3С = 4Fe+3CO2.

Окислители и восстановители: характеристика

Атомы, которые в процессе химического превращения электроны отдают, называются восстановителями, их степень окисления (СО) в результате увеличивается. Атомы, принимающие электроны, называют окислителями, и их СО уменьшается.

Говорят, что окислители, принимая электроны, восстанавливаются, а восстановители — окисляются в процессе отдачи электронов.

Важнейшие представители окислителей и восстановителей представлены в следующей таблице:

Типичные окислители Типичные восстановители
Простые вещества, состоящие из элементов с высокой электроотрицательностью (неметаллы): йод, фтор, хлор, бром, кислород, озон, сера и т. п. Простые вещества, состоящие из атомов элементов с низкой электроотрицательностью (металлы или неметаллы): водород H2, углерод C (графит), цинк Zn, алюминий Al, кальций Ca, барий Ba, железо Fe, хром Cr и так далее.
Молекулы или ионы, содержащие в составе атомы металлов или неметаллов с высокими степенями окисления:

  • оксиды (SO3, CrO3, CuO, Ag2O и др.);
  • кислоты (HClO4, HNO3, HMnO4 и др.);
  • соли (KMnO4, KNO3, K2Cr2O4, Na2Cr2O7, KClO3, FeCl3 и др.).
Молекулы или ионы, имеющие в своём составе атомы металлов или неметаллов с низкими степенями окисления:

  • водородные соединения (HBr, HI, HF, NH3 и т. д.);
  • соли (бескислородных кислот — K2S, NaI, соли сернистой кислоты, MnSO4 и др.);
  • оксиды (CO, NO и др.);
  • кислоты (HNO2, H2SO3, H3PO3 и др.).
Ионные соединения, содержащие катионы некоторых металлов с высокими СО: Pb3+, Au3+, Ag+, Fe3+ и другие. Органические соединения: спирты, кислоты, альдегиды, сахара.

На основе периодического закона химических элементов чаще всего можно предположить окислительно-восстановительные способности атомов того или иного элемента. По уравнению реакции также несложно понять, какие из атомов являются окислителем и восстановителем.

Как определить, является атом окислителем или восстановителем: достаточно записать СО и понять, какие атомы её увеличили впроцессе реакции (восстановители), а какие уменьшили (окислители).

Вещества с двойственной природой

Атомы, имеющие промежуточные СО, способны и принимать и отдавать электроны, в результате этого вещества, содержащие в своём составе такие атомы, будут иметь возможность проявить себя как окислителем, так и восстановителем.

Примером может быть пероксид водорода. Содержащийся в его составе кислород в СО -1 может как принять электрон, так и отдать его.

При взаимодействии с восстановителем пероксид проявляет окислительные свойства, а с окислителем — восстановительные.

Рассмотреть подробнее можно при помощи следующих примеров:

  • восстановление (пероксид выступает как окислитель) при взаимодействии с восстановителем;

SO2 + H2O2 = H2SO4

О-1 +1е = О-2

  • окисление (пероксид является в этом случае восстановителем) при взаимодействии с окислителем.

2KMnO4 + 5H2O2 + 3H2SO4 = 2MnSO4 + 5О2 + K2SO4 + 8H2O

2О-1 -2е = О20

Классификация ОВР: примеры

Различают следующие типы окислительно-восстановительных реакций:

  • межмолекулярное окисление-восстановление (окислитель и восстановитель находятся в составе разных молекул);
  • внутримолекулярное окисление-восстановление (окислитель находится в составе той же молекулы, что и восстановитель);
  • диспропорционирование (окислителем и восстановителем является атом одного и того же элемента);
  • репропорционирование (окислитель и восстановитель образуют в результате реакции один продукт).

Примеры химических превращений, относящихся к различным типам ОВР:

  • Внутримолекулярные ОВР — это чаще всего реакции термического разложения вещества:

2KCLO3 = 2KCl + 3O2

(NH4)2Cr2O7 = N2 + Cr2O3 + 4H2O

2NaNO3 = 2NaNO2 + O2

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O

2Al + Fe2O3 = Al2O3 + 2Fe

N2 + 3H2 = 2NH3

  • Реакции диспропорционирования:

3Br2 + 6KOH = 5KBr + KBrO3 + 6H2O

3HNO2 = HNO3 + 2NO + H2O

2NO2 + H2O = HNO3 + HNO2

4KClO3 = KCl + 3KClO4

  • Реакции репропорционирования:

2H2S + SO2 = 3S + 2H2O

HOCl + HCl = H2O + Cl2

Токовые и бестоковые ОВР

Окислительно-восстановительные реакции также разделяют на токовые и бестоковые.

Первый случай — это получение электрической энергии за счёт химической реакции (такие источники энергии могут использоваться в двигателях машин, в радиотехнических устройствах, приборах управления), либо электролиз, то есть химическая реакция, наоборот, возникает за счёт электроэнергии (с помощью электролиза можно получать различные вещества, обрабатывать поверхности металлов и изделий из них).

Примерами бестоковых ОВР можно назвать процессы горения, коррозии металлов, дыхания и фотосинтеза и т.д.

Метод электронного баланса ОВР в химии

Уравнения большинства химических реакций уравниваются несложным подбором стехиометрических коэффициентов.

Однако при подборе коэффициентов для ОВР можно столкнуться с ситуацией, когда количество атомов одних элементов не удаётся уравнять, не нарушая при этом равенство количеств атомов других.

В уравнениях таких реакций подбирают коэффициенты методом составления электронного баланса.

Основывается метод на том, что сумма принимаемых окислителем электронов и количество отдаваемых восстановителем приводится к равновесию.

Метод складывается из нескольких этапов:

  1. Записывается уравнение реакции.
  2. Определяются СО элементов.
  3. Определяются элементы, которые в результате реакции изменили свои степени окисления. Отдельно записываются полуреакции окисления и восстановления.
  4. Подбираются множители для уравнений полуреакций так, чтобы уравнять принятые в полуреакции восстановления и отданные в полуреакции окисления электроны.
  5. Подобранные коэффициенты проставляются в уравнение реакции.
  6. Подбираются остальные коэффициенты реакции.

На простом примере взаимодействия алюминия с кислородом удобно написать уравнивание поэтапно:

  • Уравнение: Al + O2 = Al2О3
  • СО у атомов в простых веществах алюминия и кислорода равны 0.

Al0 + O20 = Al+32O-23

Al0 -3е = Al+3;

O20 +4e = 2O-2

  • Подбираем коэффициенты, при умножении на которые сравняется количество принятых и количество отданных электронов будет одинаковым:

Al0 -3е = Al+3 коэффициент 4;

O20 +4e = 2O-2 коэффициент 3.

  • Проставляем коэффициенты в схему реакции:

4Al + 3O2 = Al2O3

  • Видно, что для уравнивания всей реакции достаточно поставить коэффициент перед продуктом реакции:

4Al + 3O2 = 2Al2O3

Примеры заданий на составление электронного баланса

Могут встречаться следующие задания на уравнивания ОВР:

  • Взаимодействие перманганата калия с хлоридом калия в кислой среде с выделением газообразного хлора.

Марганцевокислый калий KMnO4 (перманганат калия, «марганцовка») — сильный окислитель за счёт того, что в KMnO4 степень окисления Mn равна +7. С его помощью часто получают газообразный хлор в лабораторных условиях по следующей реакции:

KCl + KMnO4 + H2SO4 = Cl2 + MnSO4 + K2SO4 + H2O

K+1Cl-1 + K+1Mn+7O4-2 + H2+1S+6O4-2 = Cl20 + Mn+2S+6O4-2 + K2+1S+6O4-2 + H2+1O-2

Электронный баланс:

Как видно после расстановки СО, атомы хлора отдают электроны, повышая свою СО до 0, а атомы марганца электроны принимают:

Mn+7 +5е = Mn+2 множитель два;

2Cl-1 -2е = Cl20 множитель пять.

Проставляем в уравнение коэффициенты в соответствии с подобранными множителями:

10K+1Cl-1 + 2K+1Mn+7O4-2 +H2SO4 = 5Cl20 + 2Mn+2S+6O4-2 + K2SO4 + H2O

Уравниваем количество остальных элементов:

10KCl + 2KMnO4 + 8H2SO4 = 5Cl2 + 2MnSO4 + 6K2SO4 + 8H2O

  • Взаимодействие меди (Cu) с концентрированной азотной кислотой(HNO3) с выделением газообразного оксида азота (NO2):

Cu + HNO3(конц.) = NO2 ­ + Cu(NO3)2 + 2H2O

СО :

Cu0 + H+1N+5O3-2 = N+4O2 ­ + Cu+2(N+5O3-2)2 + H2+1O-2

Электронный баланс :

Как видно, атомы меди повышают свою СО с нуля до двух, а атомы азота — снижают с +5 до +4

Cu0 -2е = Cu+2 множитель один;

N+5 +1е = N+4 множитель два.

Проставляем в уравнение коэффициенты:

Cu0 + 4H+1N+5O3-2 = 2N+4O2 ­ + Cu+2(N+5O3-2)2 + H2+1O-2

Уравниваем остальные элементы:

Cu + 4HNO3(конц.) = 2NO2 ­ + Cu (NO3)2 + 2H2O

  • Взаимодействие дихромата калия с Н2S в кислой среде:

Запишем схему реакции, расставим СО:

К2+1Сr2+6О7-2 + Н2+1S-2 + Н2+1S+6O4-2 = S0 + Сr2+3(S+6O4-2)3 + K2+1S+6O4-2 + H2O

S-2 –2e = S0 коэффициент 3;

2Cr+6 +6e = 2Cr+3 коэффициент 1.

Подставляем:

К2Сr2О7 + 3Н2S + Н2SО4 = 3S + Сr2(SО4)3 + K2SO4 + Н2О

Уравниваем остальные элементы:

К2Сr2О7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4 + 7Н2О

Влияние реакционной среды

Характер среды влияет на протекание тех или иных ОВР. Роль реакционной среды можно проследить на примере взаимодействия перманганата калия (KMnO4) и сульфита натрия (Na2SO3) при различных значениях рН:

  1. Na2SO3 + KMnO4 = Na2SO4 + MnSO4 + K2SO4 (pH 7 щелочная среда).

Видно, что изменение кислотности среды приводит к образованию разных продуктов взаимодействия одних и тех же веществ. При изменении кислотности среды они происходят и для других реагентов, вступающих в ОВР. Аналогично показанным выше примерам реакции с участием дихромат-иона Cr2O72- будут проходить с образованием разных продуктов реакции в различных средах:

в кислой среде продуктом будет Cr3+;

в щелочной — CrO2—, CrO33+;

в нейтральной — Cr2O3.

Источник: https://1001student.ru/himiya/okislitelno-vosstanovitelnye-reaktsii.html

Стадии ОВР

Окисление – отдача электронов атомами, молекулами или ионами. В результате степень окисления повышается. Восстановители отдают электроны.

Восстановление – присоединение электронов. В результате степень окисления понижается. Окислители принимают электроны.

ОВР – сопряженный процесс: если есть восстановление, то есть и окисление.

Правила ОВР

Эквивалентный обмен электронов и атомный баланс.

Кислая среда

В кислой среде высвобождающиеся оксид-ионы связываются с протонами в молекулы воды; недостающие оксид-ионы поставляются молекулами воды, тогда из них высвобождаются протоны.

Там, где не хватает атомов кислорода, пишем столько молекул воды, сколько не хватает оксид-ионов.

Пример. Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

1. Определяем степень окисления: сера в сульфите калия имеет степень окисления +4, марганец в перманганате калия имеет степень окисления +7, серная кислота – среда протекания реакции.
Мараганец в высшей степени окисления – окислитель, следовательно, сульфит калия восстановитель.

Примечание: +4 – промежуточная степень окисления для серы, поэтому она может выступать как восстановителем, так и окислителем. С сильными окислителями (перманганат, дихромат) сульфит является восстановителем (окисляется до сульфата), с сильными восстановителями (галогенидами, халькогенидами) сульфит окислитель (восстанавливается до серы или сульфида).

Сера из степени окисления +4 переходит в +6 – сульфит окисляется до сульфата. Марганец из степени окисления +7 переходит в +2 (кислая среда) – перманганат ион восстанавливается до Mn2+.

2. Составляем полуреакции. Уравниваем марганец: Из перманганата высвобождаются 4 оксид-иона, которые связываются ионами водорода (кислая среда) в молекулы воды. Таким образом, 4 оксид-иона связываются с 8 протонами в 4 молекулы воды.

Другими словами, в правой части уравнения не хватает 4 кислорода, поэтому пишем 4 молекулы воды, в левой части уравнения – 8 протонов.

Семь минус два – плюс пять электронов. Можно уравнивать по общему заряду: в левой части уравнения восемь протонов минус один перманганат = 7+, в правой части марганец с зарядом 2+, вода электронейтральна. Семь минус два – плюс пять электронов. Все уравнено.

Уравниваем серу: недостающий оксид-ион в левой части уравнения поставляется молекулой воды, из которой впоследствии высвобожается два протона в правую часть.
Слева заряд 2-, справа 0 (-2+2). Минус два электрона.

3. Суммарное уравнение электронного баланса. Умножаем верхнюю полуреакцию на 2, нижнюю на 5.

Сокращаем протоноы и воду.

4. Итоговое уравнение реакции: Сульфат ионы связываются с ионами калия и марганца.

Щелочная среда

В щелочной среде высвобождающиеся оксид-ионы связываются молекулами воды, образуя гидроксид-ионы (OH– группы). Недостающие оксид-ионы поставляются гидроксо-группами, которых надо брать в два раза больше.

Там, где не хватает оксид-ионов пишем гидроксо-групп в 2 раза больше, чем не хватает, с другой стороны – воду.

Пример. Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

Определяем степень окисления:

Висмут (III) с сильными окислителями (например, Cl2) в щелочной среде проявляет восстановительные свойства (окисляется до висмута V):

Так как в левой части уравнения не хватает 3 кислородов для баланса, то пишем 6 гидроксо-групп, а справа – 3 воды.

Итоговое уравнение реакции:

Нейтральная среда

В нейтральной среде высвобождающиеся оксид-ионы связываются молекулами воды с образованием гидроксид-ионов (OH– групп). Недостающие оксид-ионы поставляются молекулами воды. Из них высвобождаются ионы H+.

Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

1. Определяем степень окисления: сера в персульфате калия имеет степень окисления +7 (является окислителем, т.к. высшая степень окисления), бром в бромиде калия имеет степень окисления -1 (является восстановителем, т.к. низшая степень окисления), вода – среда протекания реакции.

Сера из степени окисления +7 переходит в +6 – персульфат восстанавливается до сульфата. Бром из степени окисления -1 переходит в 0 – бромид ион окисляется до брома.

2. Составляем полуреакции. Уравниваем серу (коэффициент 2 перед сульфатом). Кислород уравнен.
В левой части заряд 2-, в правой части заряд 4-, присоединено 2 электрона, значит пишем +2

Уравниваем бром (коэффициент 2 перед бромид-ионом). В левой части заряд 2-, в правой части заряд 0, отдано 2 электрона, значит пишем –2

3. Суммарное уравнение электронного баланса.

4. Итоговое уравнение реакции: Сульфат ионы связываются с ионами калия в сульфат калия, коэффициент 2 перед KBr и перед K2SO4. Вода оказалась не нужна – заключаем в квадратные скобки.

Классификация ОВР

  1. Окислитель и восстановитель – разные вещества
  2. Самоокислители, самовосстановители (диспропорционирование, дисмутация). Элемент в промежуточной степени окисления.

  3. Окислитель или восстановитель – среда для прохождения процесса
  4. Внутримолекулярное окисление-восстановление. В состав одного и того же вещества входят окислитель и восстановитель.

    Твердофазные, высокотемпературные реакции.

Количесвеннная характеристика ОВР

Стандартный окислительно-восстановительный потенциал, E0 – электродный потенциал относительно стандартного водородного потенциала. Больше об окислительно-восстановительном равновесии.

Для прохождения ОВР необходимо, чтобы разность потенциалов была больше нуля, то есть потенциал окислителя должен быть больше потенциала восстановителя:

,

Например:

Чем ниже потенциал, тем сильнее восстановитель; чем выше потенциал, тем сильнее окислитель.
Окислительные свойства сильнее в кислой среде, восстановительные – в щелочной.

Источник: http://studentoriy.ru/okislitelno-vosstanovitelnye-reakcii/

Одобрено

Окислительно – восстановительные реакции (ОВР)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственный технический университет

Окислительно-восстановительные реакции

Методические указания

к выполнению лабораторных работ и решению задач

по дисциплине «Общая и неорганическая химия»

для студентов всех специальностей

всех форм обучения

редакционно-издательским советом

государственного

технического университета

2008

Цель работы: проведение качественных опытов, раскрывающих окислительные и восстановительные свойства отдельных веществ. Приобретение навыков составления окислительно-восстановительных уравнений методом электронного баланса.

Общие указания к выполнению лабораторных работ

Лабораторные работы являются неотъемлемой частью курса общей химии, одним из важнейших звеньев учебно-педагогического процесса. При изучении химии как науки, основанной на эксперименте, выполнение лабораторных работ ― обязательный элемент учебного процесса.

Выполнение лабораторных работ укрепляет знания в данной области, развивает у студентов экспериментаторские навыки и самостоятельность.

Приступая к выполнению лабораторной работы, необходимо изучить основные теоретические положения по выполняемой теме, представлять цель и план проведения работы, принять меры предосторожности.

При выполнении лабораторной работы необходимо записать в рабочий дневник тему работы, указать цель опыта, сформулировать его теоретическое обоснование, записать наблюдения, уравнения протекающих реакций, сделать выводы.

Правила техники безопасности

1. К любой работе следует приступать только тогда, когда все этапы ее известны и не вызывают сомнений.

2. Работать в химической лаборатории нужно аккуратно, без спешки. На рабочем столе должны находиться только необходимые приборы и рабочий дневник.

3. Для защиты одежды от действия химических реактивов необходимо работать в халате.

4. Все опыты с ядовитыми веществами, концентрированными кислотами, летучими и едкими веществами проводить только в вытяжном шкафу, открыв дверцу шкафа на 1/3.

5. Не следует пользоваться реактивами, если они хранятся в посуде без этикеток.

6. Нельзя выливать в раковину остатки кислот, щелочей и огнеопасных веществ: их нужно сливать в специально предназначенные склянки, находящиеся в вытяжном шкафу.

7. При разбавлении концентрированной серной кислоты вливать кислоту в воду (а не наоборот) небольшими порциями, помешивая.

8. Запрещается работать с огнеопасными веществами вблизи включенных горелок или электрических приборов.

9. Нельзя выбрасывать в раковину непрореагировавшие остатки металлов.

10. Горячие жидкости нельзя выливать в тонкостенную посуду.

11. Во избежание ранения осколками стекла следует соблюдать меры предосторожности при работе со стеклянной посудой.

12. Не допускать попадания кислоты или щелочи на руки! При попадании кислоты на кожу обожженное место промойте большим количеством проточной воды, а затем обработайте разбавленным раствором (1-3%-ным) бикарбоната натрия. При попадании щелочи на кожу вначале также промойте проточной водой, а затем разбавленным раствором (3%-ным) уксусной или борной кислоты.

13. При термическом ожоге кожу следует обмыть спиртом, а затем смазать мазью от ожогов.

14. При попадании реактивов в глаза следует промыть их струей воды и обратиться к врачу.

15. При отравлении газами необходимо обеспечить пострадавшему приток свежего воздуха.

Пренебрежение требованиями техники безопасности в работе может привести к несчастным случаям, жертвами которых часто становятся не сами нарушители, а их товарищи по работе. Все работающие в лаборатории должны уметь оказывать первую помощь при ожогах и отравлениях.

ОСНОВНЫЕ ПОНЯТИЯ

Степень окисления элементов и сущность окислительно-восстановительных явлений

Окислительно-восстановительные реакции имеют очень широкое распространение и являются чрезвычайно важными для обмена веществ в живых организмах, для многих промышленных процессов, связанных с получением химических веществ. Они имеют огромное значение в теории и практике.

Окислительно-восстановительные реакции – это такие реакции, которые протекают с изменением степени окисления атомов элементов, входящих в состав реагирующих веществ.

Например,

NaOH + HCl = NaCl + H2O ― реакция идет без изменения степени окисления. Такого типа реакции называются обменными.

Zn0 + HCl- = H20 + Zn2+Cl2 – реакция протекает с изменением степени окисления, следовательно, это окислительно-восстановительная реакция (ОВР).

Zn0 – 2e ® Zn2+ 1 восстановитель, окисление

2H+ + 2e ® H20 1 окислитель, восстановление

Сущность окислительно-восстановительных процессов состоит в переходе валентных электронов от восстановителя к окислителю. При окислительно-восстановительных реакциях одновременно протекают два взаимосвязанных процесса: окисление и восстановление.

Окисление ― это процесс отдачи электрона. Этот процесс сопровождается повышением степени окисления элемента. Вещество, отдающее электрон, называется восстановителем.

Восстановление ― это процесс присоединения электронов. Этот процесс сопровождается понижением степени окисления элемента. Вещество, принимающее электрон, является окислителем.

Состояние атома в молекуле характеризуется с помощью понятия «степени окисления».

Под степенью окисления понимают заряд атома элемента в соединении, вычисленный из предположения о том, что молекула состоит только из ионов.

Степень окисления ― понятие условное, т.к. большинство соединений не являются ионами, чаще встречаются соединения с ковалентной связью. Степень окисления ― величина переменная.

Вычисление степени окисления производится на основании того, что молекула любого вещества в целом электронейтральна, т.е. алгебраическая сумма степеней окисления всех атомов в молекуле равна нулю.

Степень окис­ления атома обозначается арабскими цифрами со знаком (+) или (–) после цифры.

В простых веществах (О2, Н2, N2) степень окисления эле­мента всегда равна нулю, так как в этих соединениях электронная плотность равномерно распределена между атомами в молекуле и не наблюдается одностороннего оттягивания электронных пар, участвующих в образовании химических связей. В простейших ковалентных соединениях значение положительной степени окисле­ния элемента соответствует числу оттянутых от атома связываю­щих электронных пар, а величина отрицательной степени окисле­ния ― числом притянутых электронных пар.

В соединениях некоторые элементы проявляют всегда посто­янную степень окисления, но для большинства элементов она в различных соединениях различна. В каждом конкретном случае степень окисления рассчитывается по формуле соединения.

Для определения степени окисления элементов в химических соедине­ниях следует руководствоваться следующими положениями:

1. Постоянную степень окисления имеют щелочные металлы (+1), щелочноземельные металлы (+2), фтор (-1).

Для водорода в большинстве соединений характерна степень окисления 1+, а в гидридах металлов и в некоторых других соединениях она рав­на 1-.

Кислород в соединениях проявляет главным образом степень окисления 2-, к исключениям относятся пероксидные соединения, степень окисления кислорода в которых равна 1-, и фторид кислорода OF2, в котором она равна 2+.

2. Так как молекула электронейтральна, то алгебраическая сумма степеней окисления атомов элементов с учетом состава мо­лекулы равна нулю.

Принимая во внимание это положение, легко определить степень окисления элементов в соединении. Для этого надо знать формулу соединения и степени окисления других эле­ментов, входящих в состав этого соединения.

Например, необходимо вычислить степень окисления серы в серной кислоте:

Н2SO4 (1+)·2 + X + (2-)·4 =0 X=6+

Находим, что степень окисления серы равна 6+.

3. Степень окисления элементов в молекулах простых веществ О2, Сl2 и т.п. равна нулю.

4. Степень окисления металлов в атомарном состоянии согласно рентгенографическим исследованиям, установившим равномерное
распределение электронной плотности в них, также равна нулю (Сг, Znи т.п.).

5. Понятие о степени окисления является условным и не всегда характеризует настоящее состояние атомов в соединениях, но оно весьма удобно и полезно при классификации различных соединений, рассмотрении окислительно-восстановительных процессов, предска­зания направления течения и продуктов химических реакций и т.д.

Составление уравнений ОВР

Для составления уравнений окислительно-восстановительных реакций обычно используют два метода:

1) метод электронного баланса,

2) электронно-ионный метод.

При расчете коэффициентов в окислительно-восстановительных реакциях пользуются правилом электронного баланса: суммарное число электронов, теряемых восстановителем, должно быть равно суммарному числу электронов, приобретаемых окислителем.

В данном руководстве мы остановимся на рассмотрении метода электронного баланса.

Метод электронного баланса

Метод электронного баланса основан на определении общего числа электронов, перемещавшихся от восстановителя к окислителю.

Для составления уравнения окислительно-восстановительной реакции необходимо, прежде всего, знать химические формулы исходных веществ и полу­чающихся продуктов.

Исходные вещества нам известны, а продукты реакции устанавливаются либо экспериментально, либо на основании известных свойств элементов. Участие воды в реакции выясняется при составлении уравнения.

Источник: https://mirznanii.com/a/325182/okislitelno-vosstanovitelnye-reaktsii

ovdmitjb

Add comment