Kievuz

Система технологий ГЭС

Содержание

Гэс изнутри

Система технологий ГЭС

Теоретически с гидроэлектростанциями все понятно — вода идет из верхнего бьефа в нижний, крутит рабочее колесо турбины. Турбина вращает генератор, а тот вырабатывает электричество… Интересны детали. Хозяйке на заметку: чтобы получить 1 киловатт-час электроэнергии, надо спустить с высоты 27 метров 14 тонн воды.

(Детали подсмотрены в процессе посещения девяти разных гидроэлектростанций). Перефразируя классика: все тепловые электростанции похожи друг на друга, каждая гидроэлектростанция устроена по-своему. Иными словами, типовых ГЭС не существуют, все ГЭС разные.

У каждой свой расход воды, напор, рельеф, грунт, климат, близость моря, объем водохранилища… Вот, например, вроде бы обычный машинный зал станции. За исключением того, что все окна в нем — искусственные, с подсветкой. Все потому, что машинный зал находится в скале на глубине 76 метров.

Это первая в СССР подземная гидроэлектростанция, с поверхности к ней идут четыре водовода диаметром 6 м. А это шахта, также вырубленная в скальном основании, для извлечения из глубинного машзала оборудования в случае его ремонта/замены:

Затворы и сбросные сооружения

В идеале вся вода должна идти через турбины и давать энергию. Но не всегда это возможно.

Часть воды приходится сбрасывать мимо ГЭС: — при ремонте гидроагрегатов; — при весенних паводках, если нет водохранилища многолетнего регулирования (а его часто нет);

— бывает, что в каскаде ГЭС (станций, стоящих на одной реке) пропускная способность верхней станции больше, чем нижней; тогда нижняя должна пустить часть воды мимо турбин, иначе ее просто затопит;

— иногда открывают холостой водосброс по запросу рыбзаводов для пропуска мальков вниз по течению; — и т.д.

Холостой водосброс Беломорской ГЭС — это три затвора.

Довольно много внимания уделено вопросу резервирования, потому что не суметь вовремя понизить уровень в водохранилище — это чревато. Любой из затворов здесь можно опустить/поднять козловым краном, два из трех — электрическими лебедками. В крайнем случае можно и вручную (со скоростью, правда, 3 см/мин). Затвор поднят, идет холостой сброс для водозабора города Беломорска, находящегося ниже по течению: Для борьбы с обледенением затворов применяют индукционный подогрев. На обогрев данного экземпляра, например, требуется 150 кВт: Иногда для этого же делают барботаж — пропускают воздух из глубины вдоль затвора; видим шланг системы сжатого воздуха:

На сбросе предусматривают мероприятия для гашения кинетической энергии потока — водобойные колодцы, столкновение потоков, ступени или, как здесь, на Волховской ГЭС — водобойная плита с гасителями:

О рыбе

На Нижнетуломской ГЭС сделан специальный рыбоход для семги, поднимающейся на нерест вверх по течению. Конструкция имитирует собой полукилометровый горный ручей с камнями на дне, зигзагообразными проходами и местами для отдыха рыбы.

Интересно, что в период нереста на ГЭС отключают ближний к рыбоходу 4-й гидроагрегат, чтобы семга могла услышать шум рыбохода и направиться именно туда.

На Верхнетуломской станции рыбоход сделали в виде 2-километрового тоннеля с подсветкой и специального рыболифта, но такая конструкция оказалась неудачной, рыба не пошла.

Из положения вышли — тоннель превратили в рыбзавод и пускают в него теплую воду от охлаждения генераторов. И малькам хорошо, и энергоэффективность налицо. Откуда в генераторе теплая вода — см.ниже.

Безопасность

Напомню, что при аварии-2009 на Саяно-Шушенской ГЭС после прорыва воды в машинный зал было быстро потеряно электропитание собственных нужд станции, в результате чего сброс затворов на водоприемниках пришлось производить вручную. По следам этого происшествия на ГЭС активно занялись резервным питанием — аварийные дизель-генераторы, аккумуляторы.

Это тоже элемент безопасности — аэрационные трубы в верхней части водоводов Кондопожской ГЭС:

Толщина стальных стенок водоводов сравнительно небольшая — 12 мм. Кольца водоводов рассчитаны на большое внутреннее давление или небольшой вакуум. Но если закрыть верхние затворы и водовод резко опорожнить, то внутри них возникнет глубокий вакуум, и трубы могут деформироваться. Аэрационные трубы впустят воздух при опорожнении, и все будет хорошо. Остатки деревянного водовода 1930-х годов: На случай, если во время работы турбинный водовод все же прорвется, предусмотрена защитная стенка (в центре кадра): Благодаря ей вода пойдет не направо — на административное здание, а обойдет станцию слева и по выемке уйдет в нижний бьеф.

Управление и контроль

Сейчас мы находимся между турбиной и генератором и наблюдаем соединяющий их вал. Слева видна схема гидроагрегата с выведенными на нее манометрами, показывающими давления в системе смазки. Под ногами — гидравлические приводы направляющего аппарата: Больше параметров можно увидеть в машинном зале.

Температуры воды и воздуха, уровни воды в бьефах: Мнемосхема на дисплее. Этот гидроагрегат не работает (мощность 0 МВт, направляющий аппарат закрыт, частота вращения ротора 0 %).

Хорошо видно, как из спиральной камеры турбины (внизу) вода отбирается и подается на охладители генератора (он в центре, красного цвета, охладители А и Б) и для смазки подпятника, верхнего (ВГП) и нижнего (НГП) генераторных подшипников. Да-да, они смазываются водой. Отсюда и берется теплая вода для рыбзавода.

В правой части виден красный бак с маслом — это гидравлическая система управления направляющим аппаратом. Здесь же показываются давления, расходы и уровни всех жидкостей.

Информация о вибрациях:

В скобках: официально причиной разрушения гидроагрегата на той же Саяно-Шушенской было названо усталостное разрушение шпилек крепления крышки турбины из-за вибраций, возникавших при переходах гидроагрегата через диапазон «запрещенной зоны» (есть и другие мнения, но сейчас не об этом).

Где находится «запрещенная зона», увидим на центральном пульте управления ГЭС: Гидроагрегаты Г1, Г3, Г4 в работе, Г2 остановлен. На черном фоне — мощность, которую вырабатывают генераторы 38,1/38/38 МВт соответственно. У Г3 и Г4 столбики красные, потому что они работают на полную мощность, у Г1 еще есть резерв. За столбиками видна красная зона — это как раз тот диапазон мощности, в котором гидроагрегату нежелательно работать и который при пуске/останове надо побыстрее проскочить. Кстати, знающий человек еще снаружи здания скажет, какой из гидроагрегатов не работает: Вторая пара противовесов поднята — значит, затворы на турбинных водоводах агрегата номер 2 опущены. Весьма активно внедряют удаленное управление. Так, например, эта станция на 60 МВт работает круглосуточно, но персонал на ней бывает только днем и в рабочие дни, в остальное время — управляется по телемеханике с головной ГЭС: ГЭС работают по т.н. диспетчерскому распоряжению, которое регламентирует когда и сколько станции выдавать электроэнергии. Поскольку ГЭС — самые маневренные источники энергии (быстро запускаются и быстро останавливаются), то они служат для покрытия пиковых нагрузок и их выработка меняется в зависимости от времени суток и дня недели. В отличие от тепловых и атомных электростанций, которые обеспечивают базовую часть потребления и работают в относительно стабильном режиме. Диспетчерское распоряжение на экране (сорри за космическое качество снимка; по оси абсцисс — часы, по оси ординат — мощность):

Диспетчерское задание учитывает взаимное влияние ГЭС в каскаде, уровни воды в их водохранилищах, запросы потребителей по воде и электричеству и т.д.

и на основании этого распределяет выработку энергии между станциями.

Любопытно, что на реке Паз на границе между Норвегией и Россией работает 5 российских и 2 норвежских ГЭС, а сама река вытекает из финского озера. И ничего, как-то договорились.

  • гэс
  • гидроэлектростанции
  • как это работает
  • вода
  • энергетика
  • 1 июля 2019 в 19:14
  • 27 июня 2019 в 22:59
  • 18 августа 2012 в 18:29

Источник: https://habr.com/post/365973/

Гост р 55260.4.1-2013 гидроэлектростанции. часть 4-1. технологическая часть гидроэлектростанций и гидроаккумулирующих электростанций. общие технические требования, гост р от 06 сентября 2013 года №55260.4.1-2013

Система технологий ГЭС

ГОСТ Р 55260.4.1-2013

ОКС 27.140

Дата введения 2015-07-01

1 РАЗРАБОТАН Открытым акционерным обществом “Научно-исследовательский институт энергетических сооружений” (ОАО “НИИЭС”)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 330 “Процессы, оборудование и энергетические системы на основе возобновляемых источников энергии”

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 сентября 2013 г. N 1054-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8).

Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе “Национальные стандарты”, а официальный текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”.

В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя “Национальные стандарты”.

Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

Настоящий стандарт разработан в соответствии с требованиями Федерального закона N 184-ФЗ “О техническом регулировании”.

Настоящий стандарт является нормативным техническим документом и предназначен для реализации современных требований технического регулирования в процессе проектирования технологической части гидроэлектростанций и гидроаккумулирующих электростанций при новом строительстве и реконструкции в целях создания надежного, экономически эффективного оборудования, соответствующего требуемому уровню безопасности при эксплуатации.

Настоящий стандарт входит в группу стандартов “Гидроэлектростанции”.

1 Область применения

1.

1 Настоящий стандарт устанавливает нормы и требования к проектированию технологического оборудования и технологических систем и регулирует вопросы реализации требований к оборудованию и системам, необходимых для надежной, безопасной и экономически эффективной эксплуатации гидроэлектростанций и гидроаккумулирующих электростанций при гармонизации режимов энергетического использования возобновляемых природных ресурсов и режимов выдачи электроэнергии и мощности, оказании услуг системного характера.

1.

2 Настоящий стандарт регламентирует общие принципиальные требования к проектированию технологической части ГЭС и ГАЭС и гидротехнических сооружений и распространяется на регламентацию при проектировании:

– исходных данных для проектирования технологической части объекта и выбора экономически эффективного режима использования гидроэнергоресурсов;

– режима эксплуатации объекта в энергосистеме или на изолированного потребителя;

– выбора всего комплекса технологического оборудования и систем, удовлетворяющих экономически эффективным и надежным режимам выработки электроэнергии и энергоотдачи;

– размещения всего технологического оборудования и систем, удовлетворяющих требованиям надежности, безопасности и обслуживанию при эксплуатации;

– создания противопожарных систем;

– построения и функционирования АСУ ТП ГЭС, систем контроля и предупреждения, обеспечивающих надежность и безопасность эксплуатации оборудования и объекта в целом;

– размещения служебных и бытовых помещений, предназначенных для эксплуатации технологических и инженерных систем станции;

– рекомендаций по эксплуатации оборудования и систем в нормальных и чрезвычайных условиях;

– требований по обеспечению экологической безопасности оборудования при эксплуатации объекта;

– требований по энергосбережению и энергоэффективности.

1.

3 Настоящий стандарт предназначен для использования при заказе, разработке, приемке и экспертизе проектов, создании и реконструкции объектов. Требования настоящего стандарта обязаны выполнять привлекаемые проектные и любые иные сторонние организации, выполняющие работы, относящиеся к области применения стандарта, в установленном порядке присоединившиеся к стандарту, или если требования стандарта содержатся в заключенном между сторонами договоре.

1.

4 Нормы и требования настоящего стандарта распространяются на гидроаккумулирующие электростанции (ГАЭС) и малые ГЭС при условии учета специфических для этих электростанций особенностей их эксплуатации.

1.

5 Настоящий стандарт устанавливает нормы и требования к проектированию технологического оборудования и технологических систем и регулирует вопросы реализации требований к оборудованию и системам, необходимых для надежной, безопасной и экономически эффективной эксплуатации гидроэлектростанций и гидроаккумулирующих электростанций при гармонизации режимов энергетического использования возобновляемых природных ресурсов и режимов выдачи электроэнергии и мощности, оказании услуг системного характера.

2 Нормативные ссылки

Источник: http://docs.cntd.ru/document/471851236

Микро-гидроэлектростанции (МГЭС) | С 1996г. Разработка проекта, установка, интеграция

Система технологий ГЭС

Малая гидроэлектростанция или малая ГЭС (МГЭС) – гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и состоящая из гидроэнергетических установок с установленной мощностью от 1 до 3000 кВт.

Микро-гидроэлектростанция предназначена для преобразования гидравлической энергии потока жидкости в электрическую для дальнейшей передачи сгенерированной электроэнергии в энергосистему.

Под термином микро подразумевается, что данная гидроэлектростанция устанавливается на малых водных объектах – небольших речках или даже ручьях, технологических протоках или перепадах высот систем водоподготовки, а мощность гидроагрегата не превышает 10 кВт.

МГЭС разделяют на два класса: это микро-гидроэлектростанции (до 200 кВт) и мини-гидроэлектростанции (до 3000 кВт). Первые применяются в основном в домохозяйствах, и на небольших предприятиях, вторые – на более крупных объектах. Для владельца загородного дома или небольшого бизнеса, очевидно больший интерес представляют первые.

Исходя из принципа действия, микро-гидроэлектростанции разделяют на следующие типы:

Водяное колесо. Это колесо с лопастями, установленное перпендикулярно поверхности воды и наполовину в неё погруженное. В процессе работы вода давит на лопасти и заставляет вращаться колесо.

С точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, эта конструкция хорошо работает. Поэтому часто применяется и на практике.

Гирляндная мини-ГЭС. Представляет собой перекинутый с одного берега реки на другой трос с жестко закрепленными на нем роторами. Поток воды вращает роторы, а от них вращение передаётся на трос, один конец которого соединен с подшипником, а второй – с валом генератора.

Недостатки гирляндной ГЭС: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД.

Ротор Дарье. Это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей.

Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета.

Фактически, МГЭС данной конструкции идентичны одноименным ветрогенераторам, но располагаются в жидкостной среде.

Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока. Как и у его воздушного собрата, КПД ротора Дарье уступает КПД МГЭС пропеллерного типа.

Пропеллер. Это имеющий вертикальный ротор подводный «ветряк», который в отличие от воздушного, имеет лопасти минимальной ширины всего в 2 см. Такая ширина обеспечивает минимальное сопротивление и максимальную скорость вращения и выбиралась для наиболее часто встречающейся скорости потока – 0.8-2 метра в секунду.

Пропеллерные МГЭС, также как и колесные, просты в изготовлении и обладают сравнительно высоким КПД, их частое применение этим и обусловлено.

Классификация Мини ГЭС

Классификация по вырабатываемой мощности (области применения) .

Вырабатываемая микро ГЭС мощность определяется сочетанием двух факторов, первый это напор воды, поступающей на лопасти гидротурбины, которая приводит в действие вырабатывающий электроэнергию генератор, и второй фактор – расходом, т.е. объемом воды, проходящем, через турбину за 1 секунду. Расход является определяющим фактором при отнесении ГЭС к определенному типу.

По вырабатываемой мощности МГЭС подразделяются на:

  • Бытовые мощностью до 15 кВт: используются для обеспечения электроэнергией частных домовладений и ферм.
  • Коммерческие мощностью до 180 кВт: питают электроэнергией небольшие предприятия.
  • Промышленные мощностью свыше 180 кВт: генерируют электроэнергию на продажу, либо энергия передается на производство.

Классификация по конструкции

  • Осевые турбины. У турбин такого типа поток воды движется вдоль оси, попадая на лопасти.
  • Радиально-осевые турбины. В рабочем колесе турбин данного типа поток сначала движется радиально (от периферии к центру), а затем в осевом направлении (на выход).
  • Ковшовые турбины. В этом типе турбин вода подаётся через сопла по касательной к окружности, проходящей через середину ковша. При этом она, проходя через сопло, формирует струю, летящую с большой скоростью и ударяющую о лопатку турбины, после чего колесо проворачивается, совершая работу. После отклонения одной лопатки под струю подставляется другая.  Данный тип конструкции очень распространен в микро-гидроэнергетике.
  • Поворотно-лопастные турбины. У данной турбины лопасти могут поворачиваться вокруг своей оси одновременно, за счёт чего регулируется её мощность. 

Классификация по месту установки

  • Высоконапорные – более 60 м;
  • Средненапорные – от 25 м;
  • Низконапорные – от 3 до 25 м.

Данная классификация подразумевает, что электростанция работает на разных частотах вращения, и для ее механической стабилизации принимается ряд мер, т.к. скорость потока зависит от напора.

Составные части Мини ГЭС

Электрогенерирующая установка малой ГЭС состоит из турбины, генератора и системы автоматического управления. Часть элементов системы аналогичны для систем солнечной генерации или ветряной генерации. Основные элементы системы:

  • Гидротурбина с лопатками, соединённая валом с генератором
  • Генератор. Предназначен для выработки переменного тока. Присоединяется к валу турбины. Параметры генерируемого тока быть относительно нестабильны, однако ничего похожего на скачки мощности при ветряной генерации не происходит;
  • Блок управления гидротурбиной обеспечивает пуск и останов гидроагрегата, автоматическую синхронизацию генератора при подключении к энергосистеме, контроль режимов работы гидроагрегата, аварийную остановку.
  • Блок балластной нагрузки, предназначенный для рассеивания неиспользуемой потребителем на данный момент мощность, позволяет избежать выхода из строя электрогенератора и системы контроля и управления.
  • Контроллер заряда/ стабилизатор: предназначен для управления зарядом аккумуляторных батарей, контроля поворота лопастей и преобразования напряжения.
  • Банк АКБ: накопительная ёмкость, от размера которой зависит продолжительность функционирования в автономном режиме питаемого ею объекта.
  • Инвертор, во многих гидрогенерирующих системах применяются инверторные системы. При наличии банка АКБ и контроллера заряда, гидросистемы мало чем отличаются от других систем, применяющих ВИЭ.

Мини ГЭС для частного дома

Рост тарифов на электроэнергию и отсутствие достаточных мощностей, делают актуальными вопросы о применение бесплатной энергии возобновляемых источники в домашних хозяйствах.

По сравнению с другими источниками ВИЭ, мини ГЭС представляют интерес, так как при равной мощности с ветряком и солнечной батареей они способны выдать за равный промежуток времени гораздо больше энергии.

Естественное ограничение на их применение является отсутствие реки

Если возле вашего дома протекает небольшая река, ручей или имеют место перепады высот на озерных водосбросах, то значит у вас имеются все условия для установки мини ГЭС. Потраченные на её приобретение деньги быстро окупятся – вы будете в любое время года обеспечены дешёвой электроэнергией, независимо от погодных условий и иных внешних факторов.

Основным показателем, который указывает на эффективность использования МГЭС является скорость потока водоема. Если скорость меньше 1 м/с, то необходимо принять дополнительные меры по его разгону, например, сделать обводной канал переменного сечения или организовать искусственный перепад высот.

Далее, определяется необходимая хозяйству мощность и геометрические особенности канала. Все эти показатели учитываются при выборе типа и конструкции устанавливаемой микро-ГЭС.

Преимущества и недостатки микрогидроэнергетики

К преимуществам мини гэс для дома можно отнести:

  • Экологическая безопасность (с оговорками для рыб-мальков) оборудования и отсутствие необходимости затопления больших площадей с колоссальным материальным ущербом;
  • Экологическая чистота получаемой энергии. Отсутствует влияние на свойства и качество воды. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения;
  • Низкую стоимость получаемой электроэнергии, которая в разы дешевле вырабатываемой на ТЭС;
  • Простоту и надёжность применяемого оборудования, и возможность его работы в автономном режиме (как в составе, так и вне сети электроснабжения). Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению;
  • Полный ресурс работы станции – не менее 40 лет (не менее 5 лет до капитального ремонта);
  • неисчерпаемость используемых для выработки энергии ресурсов.

Основной недостаток микро-гэс это относительная опасность для обитателей водной фауны, т.к. вращающиеся лопатки турбин, особенно в скоростных потоках, могут представлять угрозу для рыб или мальков. Условным недостатком можно так же считать ограниченность применения технологии.

Источник: http://rina.pro/napravleniya-deyatelnosti/alternativnaya-energetika/mikro-gidro-elektrostancii

Принципы работы ГЭС, модификации и технические характеристики электростанций

Система технологий ГЭС

Перспектива дефицита и дороговизна минеральных энергоресурсов заставляют уделять больше внимания возобновляемым источникам энергии. Самым эффективным из них на сегодняшний день является гидроэнергия. Современные ГЭС аккумулируют ее и превращают в электричество, обеспечивая низкую себестоимость киловатта и высокую мощность.

Принцип работы ГЭС – это использование силы падающей воды для вращения вала электрогенератора. Напор воды подается на лопасти турбины, которая раскручивает ротор.

Электрический ток от генератора поступает на трансформаторы, выравнивается, передается на распределительные станции и оттуда – по линиям электропередач к конечному потребителю.

Выработка энергии напрямую зависит от напора воды в ГЭС, количества и типа установленных турбин.

Классификация и конструктивные отличия

Естественный перепад высот на реках, который обеспечил бы нужный напор, почти не встречается в природе. Поэтому самой сложной задачей при возведении конструкции является строительство напорных сооружений. В зависимости от их типа и классифицируют гидростанции:

  1. Плотинная. Реку со спокойным течением перегораживают плотиной, высота которой определяет выходную мощность. Внутри стены проходят вертикальные или наклонные каналы, направляющие воду к генератору, благодаря созданному напору.
  2. Деривационная. На реках со слишком бурным для плотины течением сооружают отводы в виде закрытых тоннелей или открытых каналов с нужным наклоном, корректирующим давление воды. Заканчивается система отводов зданием электростанции.
  3. Плотинно-деривационная. Смешанный тип используют, когда для создания ровного напора воды требуется возведение бассейна суточного или сезонного регулирования между рекой и отводным тоннелем или между деривационной системой и станцией.
  4. Приливная. Принцип работы гидроэлектростанции приливного типа не отличается от плотинной. Только вместо русла реки перегораживают прибрежный участок морского бассейна с высоким уровнем прилива, во время которого вода накапливается в водохранилище.
  5. Аккумуляторная. ГАЭС отличается от обычной ГЭС наличием аванкамеры перед водозабором напорного канала. Из этого объемного резервуара вода подается на турбину, но может поступать и в обратном направлении, так как на станциях ставят обратимые генераторы – двигатели. Ротор в них может вращаться в обратную сторону, не вырабатывая, а потребляя электричество и заставляя систему работать как накачивающий насос.

ГАЭС строят при необходимости компенсировать резкий рост энергопотребления в пиковые часы. Наличие гидроаккумулятора позволяет достигнуть максимального КПД в отдельные моменты, а когда он не нужен, переключить станцию в режим насоса и накопления воды. При этом она работает от собственного электричества, полученного в режиме генератора.

Особенности возведения и эксплуатации

Выбор определенной модификации ГЭС определяется особенностями местности и расчетной эффективностью речного потока.

Общая схема всех видов в обязательном порядке включает сорозаборные решетки на входных отверстиях, центр управления и контроля, площадку для обслуживания электрооборудования и трансформаторы, преобразующие вырабатываемое электричество в 220 V или другой необходимый стандарт напряжения.

Для сооружения генератора ГЭС используют распространенные унифицированные элементы. Все оборудование износостойкое, обладает большим сроком эксплуатации и минимальными требованиями к обслуживанию. Но в целом устройство каждой станции уникально. Конструкцию, привязанную к конкретному географическому району, нельзя повторить, как нельзя найти и две идентичные по условиям бассейна реки.

Разобравшись, как работает гидроэлектростанция, можно сформулировать ее преимущества относительно ТЭС и АЭС:

  • вода — возобновляемый и чистый источник энергии;
  • высокий КПД;
  • отсутствие расходов на топливо;
  • снижение затрат на обслуживание и персонал;
  • низкий уровень риска аварий.

Причина, по которой выработка электроэнергии ГЭС составляет лишь около 20% от мирового производства электричества, заключается в необратимом влиянии на экосистему по всему руслу реки и ирригацию прилегающих территорий. Размеры всего гидроузла, включая водохранилище, достигают сотен тысяч га. До сих пор не существует надежных методов комплексной оценки масштабов такого влияния.

Технические нюансы

ГЭС выходят на проектную мощность быстрее, чем другие электростанции. Вследствие того, что природный напор воды непостоянен, сооружения без компенсаторных механизмов выдают разную производительность. В качестве основной характеристики для гидроэлектростанций принято брать установленную мощность всех ее генераторов. В зависимости от этого различают:

  • установленная мощность свыше 1000 МВт;
  • от 100 до 1000 МВт;
  • от 10 до 100 МВт;
  • до 10 МВт.

По высоте напорного потока ГЭС делятся на:

  • высоконапорные — свыше 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

От силы потока зависит выбор типа турбины. В высоконапорных ГЭС используют ковшевую, не погружаемую конструкцию. Вода в нее подается сильной струей из сопел и толкает ковши. При более низком напоре применяют радиально-осевые или поворотно-лопастные аппараты.

Они полностью погружены в емкость с водой, имеют различный наклон оси, строение и количество лопастей, за счет своей конструкции раскручиваются при потоке небольшой силы. Камеры для турбин производят из стали или железобетона.

Здание с электрооборудованием может располагаться непосредственно внутри плотины, рядом с ней или, в случае деривационного типа, далеко от источника воды.

В состав сооружений ГЭС включают шлюзы для судов, рыбоходы, водосбросы, ирригационные отводы при условии, что такое дополнение необходимо для поддержания действующей транспортной, сельскохозяйственной или экосистемы в пойме реки.

Источник: https://ekoenergia.ru/alternativnaya-gidroenergetika/printsip-rabotyi-ges.html

ГЭС: принцип работы, схема, оборудование, мощность

Система технологий ГЭС

Практически каждый представляет себе предназначение гидроэлектростанций, однако лишь немногие достоверно понимают принцип работы ГЭС. Основная загадка для людей – каким образом вся эта огромная плотина без какого-либо топлива генерирует электрическую энергию. Об этом и поговорим.

Что такое ГЭС?

Гидроэлектростанция – это сложный комплекс, состоящий из разных сооружений и специального оборудования. Возводятся гидроэлектростанции на реках, где есть постоянный приток воды для наполнения плотины и водохранилища.

Подобные сооружения (плотины), создаваемые при постройке гидроэлектростанции, необходимы для концентрации постоянного потока воды, который при помощи специального оборудования для ГЭС преобразовывается в электрическую энергию.

Отметим, что важную роль в плане эффективности работы ГЭС играет выбор места для строительства. Необходимо наличие двух условий: гарантированная неиссякаемая обеспеченность водой и высокий угол уклона реки.

Принцип работы ГЭС

Работа гидроэлектростанции достаточно проста. Возведенные гидротехнические сооружения обеспечивают стабильный напор воды, который поступает на лопасти турбины. Напор приводит турбину в движение, в результате чего она вращает генераторы. Последние и вырабатывают электроэнергию, которую затем по линиям высоковольтных передач доставляют потребителю.

Основная сложность подобного сооружения – обеспечение постоянного напора воды, что достигается путем возведения плотины. Благодаря ей большой объем воды концентрируется в одном месте. В некоторых случаях используют естественный ток воды, а иногда плотину и деривацию (естественное течение) применяют совместно.

В самом здании находится оборудование для ГЭС, основная задача которого заключается в преобразование механической энергии движения воды в электрическую. Эта задача возложена на генератор. Также используется и дополнительное оборудование для контроля работы станции, распределяющие устройства и трансформаторные станции.

Ниже на картинке показана принципиальная схема ГЭС.

Как видите, поток воды вращает турбину генератора, тот вырабатывает энергию, подает ее на трансформатор для преобразования, после чего она транспортируется по ЛЭП к поставщику.

Мощности

Есть разные гидроэлектростанции, которые можно поделить по вырабатываемой мощности:

  1. Очень мощные – с выработкой более 25 МВт.
  2. Средние – с выработкой до 25 МВт.
  3. Малые – с выработкой до 5 МВт.

Мощность ГЭС зависит от в первую очередь от потока воды и КПД самого генератора, который на ней применяется. Но даже самая эффективная установка не сможет производить большие объемы электроэнергии при слабом напоре воды.

Также стоит учитывать, что мощность гидроэлектростанции не является постоянной. В силу естественных природных причин уровень воды в дамбе может увеличиваться или уменьшаться.

Все это оказывает влияние на объемы производимой электроэнергии.

Роль плотины

Самый сложный, большой и вообще основной элемент любой ГЭС – плотина. Невозможно понять, что такое ГЭС, не разобравшись в сути работы плотины. Они представляют собой огромные перемычки, которые удерживают водный поток.

В зависимости от конструкции они могут отличаться: есть гравитационные, арочные и другие сооружения, но их цель всегда одна – удержание большого объема воды.

Именно благодаря плотине удается концентрировать стабильный и мощный поток воды, направляя его на лопасти турбины, которая вращает генератор. Он, в свою очередь, и производит электрическую энергию.

Технологии

Как мы уже знаем, принцип работы ГЭС основан на использовании механический энергии падающей воды, которая в дальнейшем с помощью турбины и генератора преобразуется в электрическую. Сами турбины могут быть установлены либо в дамбе, либо возле нее. В некоторых случаях применяют трубопровод, через который вода, находящаяся ниже уровня дамбы, проходит под высоким давлением.

Индикаторов мощности любой ГЭС несколько: расход воды и гидростатический напор. Последний показатель определяется разницей высот между начальной и конечной точкой свободного падения воды. При создании проекта станции на одном из этих показателей основывают всю конструкцию.

Известные сегодня технологии производства электричества позволяют получать высокий КПД при преобразовании механической энергии в электрическую. Иногда он в несколько раз превышает аналогичные показатели тепловых электростанций. Столь высокая эффективность достигается за счет применяемого на гидроэлектростанции оборудования. Оно надежное и относительно простое в использовании.

К тому же за счет отсутствия топлива и выделения большого количества тепловой энергии срок службы подобного оборудования достаточно большой. Поломки здесь случаются крайне редко. Считается, что минимальный срок службы генераторных установок и вообще сооружений – около 50 лет.

Хотя на самом деле даже сегодня вполне успешно функционируют гидроэлектростанции, которые были построены в тридцатых годах прошлого века.

Гидроэлектростанции России

На сегодняшний день на территории России действует около 100 гидроэлектростанций. Конечно, их мощность разная, и большая часть – это станции с установленной мощностью до 10 МВт. Есть также такие станции, как Пироговская или Акуловская, которые были введены в эксплуатацию еще в 1937 году, а их мощность составляет всего 0.28 МВт.

Самыми крупными являются Саяно-Шушенская и Красноярская ГЭС с мощностью 6400 и 6000 МВт соответственно. За ними следуют станции:

  1. Братская (4500 МВт).
  2. Усть-Илимская ГЭС (3840).
  3. Бочуганская (2997 МВт).
  4. Волжская (2660 МВт).
  5. Жигулевская (2450 МВт).

Несмотря на огромное количество подобных станций, они вырабатывают всего 47700 МВт, что равно 20% от суммарного объема всей производимой энергии в России.

В заключение

Теперь вы понимаете принцип работы ГЭС, преобразовывающих механическую энергию потока воды в электрическую. Несмотря на достаточно простую идею получения энергии, комплекс оборудования и новые технологии делают подобные сооружения сложными. Впрочем, по сравнению с атомными электростанциями они действительно являются примитивными.

Источник: https://FB.ru/article/352306/ges-printsip-rabotyi-shema-oborudovanie-moschnost

ovdmitjb

Add comment