Kievuz

СТРОЕНИЕ И СОСТАВ КОМЕТ

Что такое комета

СТРОЕНИЕ И СОСТАВ КОМЕТ

Кометы — космические тела, которые обращается вокруг солнца с определенным периодом. При подлёте к светилу они образуют светящийся хвост из газа и пыли, что и является их отличительной чертой.

Отличие от других тел

От астероидов их отличают и состав, и размеры.Астероиды состоят из твердых веществ – металлов, силикатов, а кометы в основном из газов и небольшого количества пыли. Размеры астероидов могут иметь значения в сотни километров, а у комет этот параметр не превышает нескольких десятков, также у астероидов не бывает хвостов.

От метеоритов кометы отличаются тем, что первые – это тела, уже упавшие на землю. Они могут иметь состав металлический или каменный, а размеры – от килограммов до десятков тонн. По сути, метеориты – обломки космических тел, например, астероидов. Метеориты тоже видимы, но только потому, что сгорают в плотных слоях земной атмосферы.

Строение комет

Путешествующую в космических просторах комету нельзя визуально определить, но, при подлёте её к Солнцу, положение меняется. Странница распускает причудливый хвост, и тогда мы её видим во всей красе. Принято выделять три её основные части.

Ядро

Это центральная, твёрдая часть, обладающая подавляющей долей массы тела. Превалирующая модель Уилла предполагает, что ядро состоит из смеси льда, в которую вкраплены частицы метеорного вещества.

Модель получила названия теории «грязного снежка». Слои замороженных газов перемежаются прослойками пыли.

Сближаясь с Солнцем, поверхность кометы разогревается, и начинаются испарение газов и выброс пыли в виде протяжённого хвоста.

Но данные станции Deep Impact показывают, что ядро составлено из достаточно рыхлого материала. Оно похоже на комок пыли с порами, которые занимают 80% объёма.

Кома

Ядро окружено светлой туманной оболочкой чашеобразной формы, состоящей из пыли и газа. Кома достигает размеров от 100 тыс. км до 1,4 млн. км. Она может деформироваться от светового давления и вытягиваться в к Солнцу. Ядро и кома образуют кометную голову. Сама же кома имеет три составные части: внутреннюю, видимую и ультрафиолетовую.

Хвост

Кометный хвост — это светящаяся полоса, вызванная действием солнечного ветра и направленная в обратную от Солнца сторону. Хвост и кома создают 99,9% свечения, но имеют лишь миллионную долю от всей массы кометы. Длина и формы кометных хвостов различаются ощутимо.

 В 1680 году Большая комета (С/1680 V1) обзавелась хвостом, растянувшимся на 240 млн. км. Для хвостов не характерны резкие очертания. Они фактически прозрачны, потому что наполнены очень разреженными газами и мельчайшими пылевыми частицами. Пылинки по своему составу аналогичны составу астероидов.

Свечение газа происходит из-за его ионизации ультрафиолетом, а пыль имеет свойство рассеивать свет.

Наш соотечественник Ф. Бредихин, разработчик теории форм и хвостов комет, последние классифицировал, выделив три типа:

  1. Узкие и прямые.
  2. Широкие и слегка искривлённые.
  3. Короткие.

Такое различие объясняется различными составом и параметрами частиц, из которых составлены кометы. Солнечный ветер действует на них по-разному, поэтому и хвосты так разнообразны.

Орбиты и семейства

Движение вокруг Солнца осуществляется по сильно вытянутым, эллиптическим орбитам. Идеальными эти орбиты считать нельзя, потому что они испытывают гравитационное влияние планет, рядом с которыми пролетают.

По периодичности обращения вокруг нашего светила, кометы бывают двух классов: коротко- и долгопериодическими. К первому классу относятся объекты, имеющие периодичность менее 200 лет, а ко второму те, что обращаются за больший период. Известно о почти 700-х долгопериодических кометах.

У 30-и из них перигелийные расстояния так малы, что их называют «царапающими» Солнце. Около шестой части обнаруженных объектов считаются новыми, поскольку попадали в поле зрения только однажды. Относительно к плоскости эклиптики, кометные орбиты имеют произвольные наклоны. Короткопериодических комет насчитывается больше 200.

Их орбиты проходят рядом с плоскостью эклиптики, а сами они состоят в различных кометно-планетных семействах.

  • Семейство Юпитера. Это самое большое сообщество, включающее в себя порядка 150 комет. Периодичность их от 3,3 до 20 лет. Чаще всего можно увидеть кометы: Энке, Фая, Темпеля-2, Понса-Виннеке.
  • Семейство Сатурна. Это сообщество гораздо скромнее. Оно насчитывает почти 20 комет, среди которых: Тутля, Ван Бисбрука, Неуймина-1, Гейла. Время их обращения вокруг нашего светила от 10 до 20 лет.
  • Семейство Урана. Периоды обращения членов этой семьи от 28 до 40 лет. Их несколько, а основные – Кроммелина и Темпеля-Туттля.
  • Семейство Нептуна. Члены этого семейства обладают самой большой периодичностью, имеющей значения от 58 до 120 лет. Их около десятка, но выделяются кометы: Галлея, Понса-Брукса, Ольбертса.

Предполагается, что короткопериодические кометы когда-то имели долгий период, но планеты-гиганты оказывали на них гравитационное воздействие. Это явилось причиной изменения орбит и привязки их к орбитам конкретных планет.

Наиболее известные кометы

  • Комета Галлея. Наблюдается уже в течение 2200 лет. Её размеры и активность превышают подобные параметры иных периодических комет.
  • Комета Хейла-Боппа. Одна из самых ярких, имеющая величину в поперечнике 90 км. Солнце она облетает за 2380 лет.
  • Комета Шумейкера-Леви. Она смогла устроить грандиозное зрелище, столкнувшись с поверхностью Юпитера.
  • Комета Биелы. Перед тем, как исчезнуть, она разделилась на две части, и каждая из этих частей, отстоящих друг от друга на 2 млн. км, двигалась по единой орбите. С ней связан метеорный дождь, случающийся в ноябре и исходящий из созвездия Андромеды.

Многие аппараты приближались к кометам и проходили сквозь их хвосты.

А самое удивительное событие случилось 12 ноября 2014 года, когда от аппарата «Розетта» отделился модуль «Филы» и совершил стыковку с кометой Чурюмова-Герасименко.

История изучения

Издревле кометы считались предвестниками роковых событий, а древние греки изображали небесных гостий в виде отрубленных голов с развевающимися волосами.

Тихо Браге первым определил комету как самостоятельное небесное тело.

Сделал он это в 1577 году, а Эдмунд Галлей основательно доказал, что комета, приблизившаяся к Земле в 1682 году, летит по орбите, имеющей форму эллипса. Галлей составил каталог из 24-х кометных объектов, появлявшихся за 300 лет.

Он же установил, что три кометы – 1531, 1607 и 1682 годов – это один и тот же объект с периодичностью появления в 75,5 лет. Был предсказан следующий визит космической гостьи – 1758 год.

Это свершилось в 1759 году, заодно подтвердив закон всемирного тяготения, положенный в основу расчётов параметров орбиты.

Источник: http://light-science.ru/kosmos/solnechnaya-sistema/chto-takoe-kometa.html

Ядро кометы

СТРОЕНИЕ И СОСТАВ КОМЕТ

Солнечная система >Кометы > Ядро кометы

Ядро кометы – в каком состоянии находится ядро: из чего состоит вещество, строение кометы, сравнение ядер комет, размер, происхождение, связь с облаком Оорта.

Давайте разберемся, в каком состоянии находится ядро кометы и из чего состоит. Ядром кометы именуют целостную центральную кометную часть, которую обычно называют грязным снежком или ледяным комом. Состав ядра кометы включает скалистые обломки, пыль и замороженные газы.

При повышении температуры происходит газовая сублимация и формирование атмосферного слоя вокруг ядра – кома. На нее начинают влиять солнечное радиационное давление и ветер, из-за чего вытягивается длинный хвост. Показатель альбедо для типичного хвоста составляет 0.

04 (темнее угля).

Миссии Розетты и Филы показали, что ядро кометы 67Р/Чурюмова-Герасименко не располагает магнитным полем, а значит магнетизм мог и не повлиять на раннее формирование планетезималей. Спектрограф также вычислил, что электроны в черте 1 км отвечают за процесс деградации воды и молекул углекислого газа, высвобожденных из ядра в кому.

В 2015 году исследователи сообщили, что спущенный зонд Филы вывил минимум 16 органических соединений, где 4 впервые замечены на кометах.

НаименованиеРазмеры, кмПлотность, гр/см3Масса, кг
Галлея 15 × 8 × 8 0.6 3×1014
Темпеля 1 7.6×4.9 0.62 7.9×1013
19P/Борелли 8×4×4 0.3 2×1013
81P/Вильда 5.5×4.0×3.3 0.6 2.3×1013
67P/Чурюмова-Герасименко 4,1×3,2×1,3 км (бо́льшая часть)
2,5×2,5×2,0 км (меньшая часть)
0.4 (1.0±0.1)×1013

Происхождение ядер комет

Полагают, что кометы (или их предшественники) появились в Солнечной системе за миллионы лет до планетарного формирования.

Компьютерные модели показывают, что главные структурные особенности ядер могут объясняться небольшой скоростью аккреции слабых кометезималей.

Сейчас большинство склоняются в гипотезе туманности, где кометы выступают остатками от изначальных планетарных строительных блоков.

Кометы могут прибывать из облака Оорта и рассеянного диска.

Сравнение размеров комет и некоторых других объектов

Размер ядер комет

Большая часть кометных ядер простирается на 16 км. Среди крупнейших комет стоит вспомнить C/2002 VQ94 (100 км), Хейла-Боппа (60 км), 29P (30.8 км), 109P/Свифта-Туттля (26 км) и 28P (21.4 км).

Ядро кометы Галлея (15 х 8 х 8 км) представлено равным соотношением льда и пыли.

В 2001 году Deep Space 1 осматривал ядро кометы Борелли (8 х 4 х 4 км) и выявил, что она достигает половины размера кометного ядра Галлея. Оно также напоминает картофелину и покрыто темным материалом.

Ядро Хейла-Боппа оценили в 20-60 км в диаметре. Она казалась яркой и показывалась без использования инструментов. Диаметр ядра P/2007 R5 достигает лишь 100-200 м.

Небольшие кентавры также вытягиваются на 250-300 км, среди которых выделяют три наиболее масштабных: Чарикло (258 км), Хирон (230 км) и 1995 SN55 (300 км).

Средняя плотность комет – 0.6 г/см3.

Состав ядер комет

Примерно 80% ядра кометы Галлея занято водяным льдом и 15% – замороженный монооксид углерода. Большая часть остатка – углекислый газ, аммиак и метан в замороженном состоянии. Исследователи думают, что остальные кометы по химическому составу напоминают комету Галлея, ядро которой также темное. Возможно, на поверхностном слое присутствует кора пыли и камней.

Анализ водяного пара Чурюмова-Герасименко показал существенное различие с земным. Соотношение дейтерия к водороду втрое выше, чем в земной воде. Поэтому вряд ли вода прибыла к нам с подобных комет. Можете рассмотреть, как выглядит фото ядра различных комет.

Чурюмова-Герасименко

*Нажмите на изображение, чтобы увеличить изображение

Структура комет

Некоторые из водяных паров в комете 67Р способны выйти из ядра, но примерно 80% из них реконструируются в слоях под поверхностью. А значит, тонкие и богатые на лед слои могли сформироваться из-за кометной активности и эволюции.

Зонд Филы показал, что пылевой слой способен достигать 20 см, а под ним скрываются твердый лед или же смесь льда и пылевых частиц. Прочность вырастает с приближением к ядру.

Максимально близкое изображение ядра кометы Чурюмова-Герасименко

Расщепление комет

Процесс кометного расщепления показал, что ядра некоторых комет могут быть хрупкими. К примеру, это произошло в 1846 году с 3D/Биэлы, в 1992 году – Шумейкер-Леви 9, а также в 1995-2006 гг. – 73Р. Хотя об этом процессе сообщал еще Эфорус в 372-373 гг. до н.э.

Кометы 42Р и 53Р кажутся осколками раннего крупного объекта. Детальное изучение показало, что обе кометы приближались к Юпитеру в 1850 году и до этого момента их орбиты практически совпадали.

Альбедо ядер комет

Целостные ядра выступают одними из темнейших объектов в нашей системе. Джотто выявил, что ядро Галлея отражает лишь 4% лучей, а Deep Space 1 заметил, что комета Борелли отбивает только 2.5-3% поступающего света. Есть мнение, что материалом для темного поверхностного слоя выступают сложные органические соединения. Нагрев отключает летучие соединения, оставляя темные материалы.

Примерно 6% околоземных астероидов считаются ядрами погибших комет, лишенных дегазации. Среди таких объектов числятся 14827 Гипнос и 3552 Дон Кихот.

Комета D/1993 F2 (Шумейкеров — Леви) была разорвана гравитацией Юпитера, после чего фрагменты упали на его поверхность

Обнаружение и изучение ядер комет

Первой приближенной миссией к ядру стал полет зонда Джотто. Впервые кораблю удалось подойти на удаленность в 596 км. Исследователи сумели рассмотреть струи, низкое поверхностное альбедо и присутствие органических соединений.

В период полета аппарат столкнулся с 12000 частичками и 1-граммовым осколком, который привел к временной потере связи. Оказалось, что комета Галлея выбрасывает в пространство 3 тонны материала в секунду.

Розетта и Филы показали, что ядро 67Р лишено магнитного поля, а значит магнетизм мог и не принимать активного участия в раннем формировании планетезималей. Да и результаты анализа говорили, что электроны отвечают за деградацию воды и молекул углекислого газа, а не солнечные фотоны.

(2 5,00 из 5)

Источник: https://v-kosmose.com/kometyi-solnechnoy-sistemyi/yadro-kometyi/

ovdmitjb

Add comment