Kievuz

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Материаловедение и технология материалов. Технология конструкционных материалов

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Специальность «материаловедение и технология материалов» является одной из важнейших дисциплин практически для всех студентов, изучающих машиностроение. Создание новых разработок, которые смогли бы конкурировать на международном рынке, невозможно представить и осуществить без доскональных знаний данного предмета.

Изучением ассортимента различного сырья и его свойств занимается курс материаловедения. Различные свойства используемых материалов предопределяют спектр их применения в технике. Внутреннее строение металла или композитного сплава напрямую влияет на качество продукции.

Основные свойства

Материаловедение и технология конструкционных материалов отмечают четыре наиболее важных характеристики любого металла или сплава. В первую очередь это физические и механические особенности, позволяющие прогнозировать эксплуатационные и технологические качества будущего изделия.

Основным механическим свойством здесь является прочность — она напрямую влияет на неразрушаемость готовой продукции под воздействием рабочих нагрузок. Учение о разрушении и прочности есть одна из важнейших составных частей базового курса «материаловедение и технология материалов».

Эта наука составляет теоретическую основу для поиска нужных конструкционных сплавов и компонентов, предназначенных для изготовления деталей с нужными прочностными характеристиками.

Технологические и эксплуатационные особенности позволяют спрогнозировать поведение готового изделия при рабочих и экстремальных нагрузках, высчитать пределы прочности, дать оценку долговечности всего механизма.

В течение последних столетий основным материалом для создания машин и механизмов является металл. Поэтому дисциплина «материаловедение» уделяет большое внимание металловедению – науке о металлах и их сплавах. Большой вклад в её развитие сделали советские ученые: Аносов П. П., Курнаков Н. С., Чернов Д. К. и другие.

Цели материаловедения

Основы материаловедения обязательны для изучения будущими инженерами. Ведь основной целью включения этой дисциплин в учебный курс является обучение студентов технических специальностей делать правильный выбор материала для сконструированных изделий, чтобы продлить сроки их эксплуатации.

Достижение поставленной цели поможет будущим инженерам решить следующие задачи:

  • Правильно оценивать технические свойства того или иного материала, анализируя условия изготовления изделия и срок его эксплуатации.
  • Иметь правильно сформированные научные представления о реальных возможностях улучшения каких-либо свойств металла или сплава путем изменения его структуры.
  • Знать обо всех способах упрочнения материалов, которые могут обеспечить долговечность и работоспособность инструментов и изделий.
  • Иметь современные знания об основных группах используемых материалов, свойствах этих групп и об области применения.

Необходимые знания

Курс «материаловедение и технология конструкционных материалов» предназначен для тех студентов, которые уже понимают и могут объяснить значение таких характеристик, как напряжение, нагрузка, пластическая и упругая деформация, агрегатное состояние вещества, атомо-кристаллическое строение металлов, типы химических связей, основные физические свойства металлов. В процессе изучения студенты проходят базовую подготовку, которая им пригодится для покорения профильных дисциплин. Более старшие курсы рассматривают различные производственные процессы и технологии, в которых весомую роль играет материаловедение и технология материалов.

Знания конструктивных особенностей и технических характеристик металлов и сплавов пригодятся технологу, инженеру или конструктору, работающему в области эксплуатации современных машин и механизмов.

Специалисты в области технологии новых материалов могут найти свое место работы в машиностроительной, автомобильной, авиационной, энергетической, космической сфере.

В последнее время наблюдается дефицит специалистов с дипломом «материаловедение и технология материалов» в оборонной промышленности и в сфере разработки средств связи.

Развитие материаловедения

Как отдельная дисциплина, материаловедение являет собой пример типичной прикладной науки, объясняющей состав, строение и свойства различных металлов и их сплавов при разных условиях.

Умение добывать металл и изготавливать различные сплавы человек приобрел еще в период разложения первобытнообщинного строя. Но как отдельная наука материаловедение и технология материалов начали изучаться чуть более 200 лет назад.

Начало 18 века – период открытий французского ученого-энциклопедиста Реомюра, который первый попытался изучить внутреннюю структуру металлов.

Аналогичные исследования проводил английский фабрикант Григнон, в 1775 году написавший небольшое сообщение о выявленной им столбчатой структуре, которая образуется при отвердевании железа.

В Российской империи первые научные труды в области металловедения принадлежали М. В. Ломоносову, который в своем руководстве попытался кратко объяснить сущность различных металлургических процессов.

Большой рывок вперед металловедение сделало в начале 19 века, когда были разработаны новые методы исследования различных материалов. В 1831 году труды П. П. Аносова показали возможность исследовать металлы под микроскопом. После этого несколькими учеными из ряда стран были научно доказаны структурные превращения в металлах при их непрерывном охлаждении.

Через сто лет эра оптических микроскопов прекратила свое существование. Технология конструкционных материалов не могла делать новые открытия, пользуясь устаревшими методами. На смену оптике пришло электронное оборудование.

Металловедение стало прибегать к электронным методам наблюдения, в частности, нейтронографии и электронографии.

С помощью этих новых технологий возможно увеличение срезов металлов и сплавов до 1000 раз, а значит, оснований для научных выводов стало гораздо больше.

Теоретические сведения о строении материалов

В процессе изучения дисциплины студенты получают теоретические знания о внутренней структуре металлов и сплавов. По окончании курса слушателями должны быть получены следующие умения и навыки:

  • о внутреннем кристаллическом строении металлов;
  • об анизотропии и изотропии. Чем обусловлены эти свойства, и как на них можно воздействовать;
  • о различных дефектах строения металлов и сплавов;
  • о методах исследования внутренней структуры материала.

Практические занятия по дисциплине материаловедение

Кафедра материаловедения имеется в каждом техническом вузе. В период прохождения заданного курса студент изучает следующие методы и технологии:

  • Основы металлургии – история и современные методы получения сплавов металлов. Производство стали и чугуна в современных доменных печах. Разливка стали и чугуна, методы повышения качества продукции металлургического производства. Классификация и маркировка стали, ее технические и физические характеристики. Выплавка цветных металлов и их сплавов, производство алюминия, меди, титана и других цветных металлов. Применяемое при этом оборудование.
  • Основы материаловедения включают в себя изучение литейного производства, современного его состояния, общих технологических схем получения отливок.
  • Теорию о пластической деформации, чем отличаются деформация холодная и горячая, что такое наклеп, сущность горячей штамповки, способы холодной штамповки, спектр применения штамповочных материалов.
  • Ковка: сущность этого процесса и основные операции. Что такое продукция прокатного производства и где она применяется, какое оборудование требуется для проката и волочения. Как получают готовую продукцию по этим технологиям, и где ее применяют.
  • Сварочное производство, его общая характеристика и перспективы развития, классификация методов сварки различных материалов. Физико-химические процессы получения сварных швов.
  • Композитные материалы. Пластмассы. Способы получения, общие характеристики. Методы работы с композитными материалами. Перспективы применения.

Современное развитие материаловедения

В последнее время материаловедение получило мощный толчок развития. Потребность в новых материалах заставила ученых задуматься о получении чистых и сверхчистых металлов, ведутся работы по созданию различного сырья по изначально просчитанным характеристикам.

Современная технология конструкционных материалов предлагает использование новых веществ взамен стандартных металлических.

Больше внимания уделяется применению пластмасс, керамики, композиционных материалов, которые имеют параметры прочности, совместимые с металлическими изделиями, но лишены их недостатков.

Источник: https://FB.ru/article/210302/materialovedenie-i-tehnologiya-materialov-tehnologiya-konstruktsionnyih-materialov

Открытое образование: Онлайн-курс

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

  • 16 недель
  • 4 зачётных единицы

Курс «Технология конструкционных материалов» посвящен изучению свойств конструкционных материалов, способов их производства, получения из них заготовок и деталей машин. Наибольшее внимание в курсе уделяется получению изделий из металлических сплавов. Рассматриваются также методы получения неметаллических конструкционных материалов и изделий из них.

Курс посвящен изучению свойств конструкционных материалов, способов их производства, получения из них заготовок и деталей машин. Наибольшее внимание в курсе уделяется получению изделий из металлических сплавов. Рассматриваются также методы получения неметаллических конструкционных материалов и изделий из них.

Курс «Технология конструкционных материалов» направлен на формирование значимых для технической инженерной подготовки способностей и умений, связанных с выбором материалов, технологий изготовления, энергосбережения и применения экологически чистых машиностроительных технологий.

Курс позволяет систематизировано и наглядно сформировать знания о конструкционных материалах и технологиях изготовления изделий из них; изучить механические свойства конструкционных материалов; изучить способы изготовления заготовок деталей машин; изучить способы изготовления деталей машин (прежде всего, обработка металлов резанием); изучить способы получения заготовок и деталей машин из пластмасс и резины; изучить технологию получения спечённых изделий (порошковая металлургия) и производство композиционных материалов, а также разработать технологию изготовления отливок в разовых песчано-глинистых формах или технологию получения поковки методом горячей объемной штамповки для простых деталей. Прилагается большой банк заданий для курсовых работ.

Курс развивает конструкторское и инженерное мышление, необходимое при последующем обучении и в профессиональной деятельности.

Формат

Еженедельные занятия будут включать просмотр презентаций, анимированных иллюстративных материалов, тематических видео-лекций.

Для закрепления изученных материалов предлагаются вопросы для самостоятельной проверки, тестовые задания, виртуальные лабораторные работы и варианты курсовых работ по разделам «Литейное производство» и «Обработка металлов давлением».

Предусмотрены промежуточные контрольные тестирования по каждому разделу курса и итоговое контрольное тестирование по всему содержанию курса.

Ярушин С.Г. Технологические процессы в машиностроении : Учебник для бакалавров. М.: Юрайт, 2011. – 564 с.Технология обработки конструкционных материалов: Учебник для вузов. – 3-е изд., перераб., доп. М.

: изд-во МГТУ им Н.Э. Баумана, 2010. – 678 с.

Технология конструкционных материалов: Курс лекций: Учеб. пособие (с мультимедийным пособием на оптическом носителе). М.: изд-во МГТУ им Н.Э.

Баумана, 2010 – 227 с.

Требования

Для успешного освоения дисциплины достаточно элементарных сведений, полученных в школьных курсах химии, физики, математики.

Программа курса

Раздел 1. Введение: Основные понятия. Классификация и свойства конструкционных материалов. Значение конструкционных материалов в машиностроении.

Раздел 2. Основы металлургического производства: Производство чугуна. Производство стали. Производство цветных металлов: меди, алюминия, титана.

Раздел 3. Обработка металлов давление: Физические основы ОМД. Прокатка. Прессование. Волочение. Ковка. Объемная штамповка. Листовая штамповка

Раздел 4. Литейное производство: Значение литейного производства в машиностроении. Виды литейных форм. Классификация литейных сплавов, их механические и литейные свойства. Технология изготовления отливок в песчано-глинистых формах

Раздел 5. Сварка: Сущность процесса образования сварного соединения. Классификация способов сварки. Классификация сварных швов. Классификация сварных соединений

Раздел 6. Обработка металлов резанием: Общая характеристика процесса. Токарная обработка. Фрезерование. Обработка на сверлильных станках. Шлифование.

Раздел 7. Полимерные материалы и композиты: Общие сведения о полимерах и их свойствах. Конструкционные пластические массы, их свойства, назначение основных компонентов.

Способы получения изделий из полимерных материалов. Композиционные материалы на полимерной и металлической матрицах. Композиционные материалы на неорганической матрице: инфракерметы, и ультракерметы.

Виды, свойства и применение керамических композиционных материалов

Раздел 8. Перспективы развития производства конструкционных материалов.

Результаты обучения

В результате освоения курса «Технология конструкционных материалов» обучающийся будет способен:

  • оперировать технической терминологией учебной дисциплины при решении профессиональных задач;
  • составить маршрутную технологию изготовления изделия;
  • разрабатывать технологию изготовления отливок в разовых песчано-глинистых формах или технологию получения поковки методом горячей объемной штамповки для простых деталей;
  • производить необходимые расчёты по технологии изготовления изделия.

Формируемые компетенции

  • способность обеспечивать технологичность изделий и процессов их изготовления, умение контролировать соблюдение технологической дисциплины при изготовлении изделий (ПК-1);
  • способность выбирать основные и вспомогательные материалы для изготовления изделий, способы реализации основных технологических процессов, аналитические и численные методы при разработке их математических моделей (ПК-2)
  • способность участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции (ПК-3);

Источник: https://openedu.ru/course/urfu/TECO/

ovdmitjb

Add comment