Третья группа периодической системы
Перейти к загрузке файла |
||||||||||||||||||||||||||||||||||||||||||
Третья группа периодической системы охватывает очень большое число химических элементов, так как в состав ее, кроме элементов главной и побочной подгрупп, входят элементы с порядковыми номерами 58–71 (лантаноиды) и с порядковыми номерами 90–103 (актиноиды). Мы рассмотрим лантаноиды и актиноиды вместе с элементами побочной подгруппы
|
Металлические свойства рассматриваемых элементов выражены слабее, чем у соответствующих элементов главных подгрупп второй и особенно первой группы, а у бора преобладают неметаллические свойства.
В соединениях они проявляют степень окисленности +3. Однако с возрастанием атомной массы появляются и более низкие степени окисленности.
Для последнего элемента подгруппы — таллия наиболее устойчивы соединения, в которых его степень окисленности равна +1.
Мы уже познакомились со свойствами элементов побочных подгрупп первых трех групп периодической системы и теперь, прежде чем рассматривать остальные побочные подгруппы, можем дать общую характеристику элементов, составляющих побочные подгруппы и называемых переходными элементами.
Хотелось бы немного добавитьь об характеристике переходных элементов. Особенности переходных элементов определяются, прежде всего, электронным строением их атомов, во внешнем электронном слое которых содержатся, как правило, два s-электрона (иногда — один s-элек-трон*).
Невысокие значения энергии ионизации этих атомов указывают на сравнительно слабую связь внешних электронов с ядром; так, для ванадия, хрома, марганца, железа, кобальта энергии ионизации составляют соответственно 6,74; 6,76; 7,43; 7,90 и 7,86 эВ, Именно поэтому переходные элементы в образуемых ими соединениях имеют положительную окисленность и выступают в качестве характерных металлов, проявляя тем самым сходство с металлами главных подгрупп.
Однако между металлами главных и побочных подгрупп есть и существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами d-подуровень.
Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также электроны и свободные d-орбитали предшествующего слоя.
Поэтому для переходных эле* ментов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных d-орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений.
С этим же связана, как указывалось на стр. 578, характерная окраска многих соединений переходных элементов, тогда как соединения Металлов главных подгрупп в большинстве случаев бесцветны.
Page 3
Почти все элементы главных подгрупп IV–VII групп периодической системы представляют собой неметаллы, в то время как элементы побочных подгрупп — металлы. Поэтому в правой части периодической системы различия в свойствах элементов главных и подобных подгрупп проявляются особенно резко.
Однако в тех случаях, когда элементы главной и побочной подгруппы находятся в высшей степени окисленности, их аналогичные соединения проявляют существенное сходство. Так, хром, расположенный в побочной подгруппе VI группы, образует кислотный оксид СгО3, близкий по свойствам к триоксиду серы SОз.
Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава Н2ЭО4 (Э – обозначение какого-либо элемента в общей формуле).
Подобная близость свойств объясняется тем, что в высшей степени окисленкости атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру Is22s22p63s23p63s54s1.
Когда хром находится в степени окисленности +6 (например, в оксиде СгО3), шесть электронов его атома (пять 3d- и один 45-электрон)' вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи.
Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию Is22s22p63s23p6, отвечающую электронной струетуре благородного газа.
Аналогично у ат@ма серы, находящегося в степени окисленности +6 (например, в три©кеиде серы SOsh шесть электронов участвуют -в образовании кевалентных связей, а конфигурация остальных (Is22s22p6) также соответствует электронной структуре благородного газа.
Мы знаем, что в пределах одного периода у элементов главных подгрупп, т. е.
у s- и р-злементов, с возрастанием их порядкового номера число электронов во внешнем электронном слое атомов возрастает, что приводит к довольно быстрому переходу от типичных металлов к типичным неметаллам.
У переходных элементов возрастание порядкового номера не сопровождается существенным изменением структуры внешнего электронного слоя, поэтому химические свойства этих элементов изменяются в периоде хотя и закономерно,- но гораздо менее резко, чем у элементов главных подгрупп.
В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности_ элементов сначала возрастает (благодаря увеличению числа d-злектронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и марганца совпадает с номером группы, тогда как для железа она равна шести, для кобальта, никеля и меди — трем, а для цинка — двум. В соответствии с этим изменяется и устойчивость соединений, отвечающих определенной степени окисленности элемента. Например, оксиды TiO и VO, содержащие титан и ванадий в степени окисленности +2, — сильные восстановители, а аналогичные оксиды меди и цинка (СuО и ZnO) восстановительных свойств не проявляют.
Так, соединения, в которых степень окисленности углерода или кремния равна +4, вполне устойчивы, тогда как аналогичные соединения свинца (например, РЬО2) мало устойчивы и легко восстанавливаются.
В побочных подгруппах проявляется обратная закономерность: с возрастанием порядкового номера элемента устойчивость высших окислительных состояний повышается. Так, соединения xpoMa(VI)–сильные окислители,” а для соединений молибдена (VI) и вольфрама (VI) окислительные свойства не характерны.
В пределах каждой побочной подгруппы отмечается значительное сходство в свойствах элементов пятого и шестого периода. Как указывалось в §221, это связано с явлением лантаноидного сжатия.
В подгруппу титана входят элементы побочной подгруппы IV группы — титан, цирконий, гафний и- искусственно полученный (см. стр. 107) курчатовий. Металлические свойства выражены у этих элементов сильнее, чем у металлов главной подгруппы четвертой группы.
Источник: https://vuzlit.ru/1127806/tretya_gruppa_periodicheskoy_sistemy
Металлы главной подгруппа III группы
Групповое сходство элементов обусловлено наличием 3-х электронов на внешнем электронном слое и заключается в следующем:
– наиболее характерная валентность III (искл. Ti)
– наиболее характерная степень окисления +3
– металличный характер (искл. В)
5В 1s22s22p1
13Аl [Ne]3s23p1
31Ga[Ar]3d104s24p1
49ln [Kr]4d105s25p1
81Tl [Xe]4f145d106s26p1
С ростом заряда ядра многие важнейшие характеристики элементов изменяются немонотонно, в том числе и атомный радиус.
Соответственно, свойства простых веществ, оксидов, гидроксидов и других соединений этих элементов имеют неоднозначный характер изменения.
Особенно резко выделяется первый элемент подгруппы – бор, являющийся единственным неметаллом среди s2p1-элементов. Бор проявляет диагональное сходство с элементом главной подгруппы IV группы – кремнием Si.
Алюминий – важнейший элемент подгруппы, также имеет целый ряд специфических особенностей, отличающих его от бора, с одной стороны, и от подгруппы галлия, с другой стороны.
Характеристические соединения
Оксиды | Гидроксиды | ||||
Формула | Характер | Отношение к воде | Формула | Характер | Отношение к воде |
B2O3 | кислотный | хорошо растворимый | H3BO3H[B(OH)4] | слабая кислота1-основная | хорошо растворимая |
Al2O3 | амфотерный | не растворимый | Al(OH)3H3AlO3HAlO2H[Al(OH)4] | амфотерный | не растворимый |
Ga2O3 | амфотерный | не растворимый | Ga(OH)3H3GaO3HGaO2 | амфотерный (идеальный амфолит) | не растворимый |
In2O3 | основный со слабыми признаками амфотерности | не растворимый | In(OH)3 | амфотерный (основные свойства преобладают) | не растворимый |
Tl2O | основный | растворимый | Tl(OH) | основание (подобен щелочам) | хорошо растворимый |
13Аl [Ne] 3s23p1
Ar 26.982
1 стабильный изотоп 27Al
ЭО 1.5
E° -1,67 В
Кларк в земной коре 8,8 % по массе, самый распространенный металл. В свободном виде не встречается.
Основная форма нахождения в природе – Аl2O3 (в составе различных силикатов, полевых шпатов и глин). Встречается также в виде двойных солей: KAl(SO4)2, Na3[AlF6] и др.
Физические свойства
Простое вещество алюминий – лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке.
Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.
Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. По электропроводности занимает 4-е место после Сu, Аg, Аu.
Способы получения
1. Электролиз расплава AlCl3:
2AlCl3 = 2Al + 3Cl2
2. Основной промышленный способ – электролиз расплава Al2O3 (глинозема) в криолите 3NaF • AlF3:
2Al2O3 = 4AI + 3O2
3. Вакуумтермический:
AlCl3 + ЗК = Al + 3KCl
Химические свойства
Аl – очень химически активный металл, однако при обычных условиях ведет себя довольно инертно – имеет высокую температуру воспламенения, со многими веществами реагирует только при высокой температуре; все реакции с участием Al проходят через первоначальный замедленный период. Такое химическое поведение алюминия объясняется наличием на его поверхности очень тонкой, прочной, газо- и водонепроницаемой пленки Al2O3. При нарушении цельности этой пленки AI реагирует со многими веществами как активный восстановитель:
Al0 – Зе- → Аl3+
В подавляющем большинстве соединений атомы алюминия связаны с соседними атомами ионными связями.
1. Взаимодействие с кислородом и другими неметаллами (галогенами, серой, азотом, углеродом). Наиболее активно реагирует порошкообразный Al (алюминиевая пудра).
a) 4Al + 3O2 = 2Аl2О3
б) 2Al + 3Cl2 = 2АlСl3 хлорид
2Al + ЗВr2 = 2АlВr3 бромид
2Al + 3I2 = 2AlI3 йодид
Реакция с I2 протекает в присутствии воды. С F2 реакции нет. т. к. в первый же момент образуется прочный поверхностный слой AlF3.
в) 2Al + 3S = Al2S3 сульфид
2Al + N2 = 2AlN нитрид
4Al + ЗС = АlС3 карбид
г) C Н2 алюминий непосредственно не соединяется.
2. Взаимодействие с водой в присутствии щелочи.
Роль щелочи.
1) растворение оксидной пленки Al2O3;
2) предотвращение образования нерастворимого гидроксида Аl(ОН)3.
2Al + 6Н2O + 2NaOH = 2Na[Al(OH)4] + 3H2↑
Na[Al(OH)4] – тетрагидроксо-алюминат натрия
В отсутствие щелочи алюминий может вытеснять Н2 из воды в следующих условиях:
1) если его поверхность амальгамировать (покрыть ртутью);
2) в вакууме или в среде инертного газа после предварительной очистки поверхности металла от оксидной пленки.
3. Взаимодействие с «неокисляющими» кислотами (HCl, H2SO4 разб. и др.)
2Al + 6Н+ → 2Al3+ + 3H2↑
2Al + 6HCl = 2AlCl3 + 3H2↑
2Al + 3H2SO4 = Al2(SO4)3 + 3H2↑
4. Взаимодействие с очень концентрированными HNO3 и H2SO4
При обычной Т реакции не протекают, т. к. происходит пассивирование поверхности Al, связанное с внедрением в нее атомарного или молекулярного кислорода, а также образованием его нерастворимых соединений с Al.
При нагревании реакции протекают довольно активно:
Al + 6HNO3конц. = Al(NO3)3 + 3NO2↑ + 3H2O
8Al + 15H2SO4 конц.= 4Al2(SO4)3 + 3H2S↑ + 12Н2O
5. Взаимодействие с разбавленной HNO3
Реакция медленно протекает при обычной Т, при нагревании – более быстро.
Al + 4HNO3 = Al(NO3)3 + NO↑ + 2H2O
8Al + 30HNO3оч.разб = 8Al(NO3)3 + 3NH4NO3 + 92O
6. Взаимодействие с органическими кислотами
Реакции протекают с разбавленными уксусной и лимонной кислотами при нагревании, ускоряются в присутствии NaCl:
Al + 6СН3СООН = 2(СН3СОО)3Al + 3H2↑
7. Восстановление металлов из их оксидов (алюминотермия)
2Al + Сr2O3 = 2Cr + Al2O3
Применение алюминия
Источник: http://examchemistry.com/content/lesson/neorgveshestva/me3gr.html
1.2.2. Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов
В IA группу (главная подгруппа первой группы) таблицы Менделеева входят металлы — литий Li, натрий Na, калий К, рубидий Rb, цезий Cs и франций Fr.
Традиционно, данные элементы называют щелочными металлами (ЩМ), так как их простые вещества образуют при взаимодействии с водой едкие щелочи.
Последний из известных представителей группы щелочных металлов (Fr) является радиоактивным элементом, в связи с чем его химические свойства изучены недостаточно: период полураспада его наиболее долгоживущего изотопа 223Fr составляет всего лишь около 22 мин.
Электронные формулы, а также некоторые свойства щелочных металлов представлены в таблице ниже:
Свойство | Li | Na | К | Rb | Cs | Fr |
Заряд ядра Z | 3 | 11 | 19 | 37 | 55 | 87 |
Электронная конфигурация в основном состоянии | [He]2s1 | [Ne]3s1 | [Аr]4s1 | [Kr]5s1 | [Хе]6s1 | [Rn]7s1 |
Металлический радиус rмет, нм | 0,152 | 0,186 | 0,227 | 0,248 | 0,265 | 0,270 |
Ионный радиус rион*, нм | 0,074 | 0,102 | 0,138 | 0,149 | 0,170 | 0,180 |
Радиус гидратированного иона,rион , нм | 0,340 | 0,276 | 0,232 | 0,228 | 0,228 | — |
Энергия ионизации, кДж/моль:I1I2 | 520,27298 | 495,84562 | 418,83052 | 403,02633 | 375,72234 | (380)(2100) |
Электроотрицательность | 0,98 | 0,93 | 0,82 | 0,82 | 0,79 | 0,70 |
При движении вниз по IA группе возрастает радиус атомов металлов (rмет), что, собственно, характерно для любых элементов всех главных подгрупп. Относительно малое увеличение радиуса при переходе от K к Rb и далее к Cs обусловлено заполнением 3d- и 4d-подуровней соответственно.
Ионные радиусы ЩМ существенно меньше металлических, что связано с потерей единственного валентного электрона. Они также закономерно возрастают от Li+ к Cs+. Размеры же гидратированных катионов изменяются в противоположном направлении, что объясняется в рамках простейшей электростатической модели.
Наименьший по размеру ион Li+ лучше катионов остальных щелочных металлов притягивает к себе полярные молекулы воды, образуя наиболее толстую гидратную оболочку.
Исследования показали, что в водном растворе катион лития Li+ окружен 26 молекулами воды, из которых только 4 находятся в непосредственном контакте с ионом лития (первой координационной сфере).
С увеличением ионного радиуса катиона щелочного металла сила его электростатического взаимодействия с молекулами воды ослабевает, что приводит к снижению толщины гидратной оболочки и, как следствие, радиуса гидратированного иона [М(Н2O)n] (где n = 17, 11, 10, 10 для М+ = Na+, К+, Rb+, Cs+ соответственно).
Внешний энергетический уровень атома ЩМ содержит один единственный электрон, который слабо связан с ядром, о чем говорят низкие значения энергии ионизации I1. Атомы щелочных металлов легко ионизируются с образованием катионов М+, входящих в состав практически всех химических соединений этих элементов.
Значения I2 для всех щелочных металлов настолько высоки, что в реально осуществимых условиях ион М2+ не образуется. Электроотрицательность щелочных элементов мала, их соединения с наиболее электроотрицательными элементами (хлор, кислород, азот)имеют ионное строение, как минимум в кристаллическом состоянии.
Маленький радиус иона Li+ и высокая плотность заряда, являются причиной того, что соединения лития оказываются схожими по свойствам аналогичным соединениям магния (диагональное сходство) и в то же время отличаются от соединений остальных ЩМ.
Элементы IIA группы
В IIA группу Периодической системы элементов входят бериллий Ве, магний Мg и четыре щелочноземельных металла (ЩЗМ): кальций Са, стронций Sr, барий Ва и радий Ra, оксиды которых, раньше называемые «землями», при взаимодействии с водой образуют щелочи. Радий — радиоактивный элемент (α-распад, период полураспада примерно 1600 лет).
Электронная конфигурация и некоторые свойства элементов второй группы приведены в таблице ниже.
По электронному строению атомов элементы второй группы близки щелочным металлам. Они имеют конфигурацию благородного газа, дополненную
Свойство | Be | Mg | Ca | Sr | Ba | Ra |
Заряд ядра Z | 4 | 12 | 20 | 38 | 56 | 88 |
Электронная конфигурация в основном состоянии | [He]2s2 | [Ne]3s2 | [Ar]4s2 | [Kr]5s2 | [Xe]6s2 | [Rn]7s2 |
Металлический радиус rмет, нм | 0,112 | 0,160 | 0,197 | 0,215 | 0,217 | 0,223 |
Ионный радиус rион*, нм | 0,027 | 0,72 | 0,100 | 0,126 | 0,142 | 0,148 |
Энергия ионизации, кДж/моль:I1I2I3 | 899,5175714850 | 737,714517733 | 589,811454912 | 549,510644138 | 502,89653619 | 509,39793300 |
Электроотрицательность | 1,57 | 1,31 | 1,00 | 0,95 | 0,89 | 0,90 |
двумя s-электронами на внешнем уровне. В то же время от элементов первой группы они отличаются более высокими значениями энергии ионизации, убывающими в ряду Ве—Мg—Са—Sr— Ва. Эта тенденция нарушается при переходе от бария к радию: повышениe П и І, для Ка по сравнению с Ва объясняется эффектом инертной 6s»-пары (см. разд. 4.1).
Следует отметить, что в то время как для щелочных металлов характерна значительная разница между I1 и I2 для элементов второй группы подобный скачок наблюдается между I2 и I3.
Именно поэтому щелочные металлы в сложных веществах проявляют только степень окисления +1, а элементы второй группы +2.
Изменение свойств по группе следует общим закономерностям, рассмотренным на примере щелочных металлов. Элемент второго периода бериллий, подобно элементу первой группы литию, значительно отличается по своим свойствам от других элементов второй группы.
Так, ион Be2+ благодаря чрезвычайно малому ионному радиусу (0,027 нм), высокой плотности заряда, большим значениям энергий атомизации и ионизации оказывается устойчивым лишь в газовой фазе при высоких температурах.
Поэтому химическая связь в бинарных соединениях бериллия даже с наиболее электроотрицательными элементами (кислород, фтором) обладает высокой долей ковалентности.
Химия водных растворов бериллия также имеет свою специфику: в первой координационной сфере бериллия могут находиться лишь четыре лиганда ([Be(H2O)4]2+, (Bе(OH)4]—), что связано с малым ионным радиусом металла и отсутствием d-орбиталей.
Щелочноземельные металлы (Са, Sr, Ва, Ra) образуют единое семейство элементов, в пределах которого некоторые свойства (энергия гидратации, растворимость и термическая устойчивость солей) меняются монотонно с увеличением ионного радиуса, а многие их соединения являются изоморфными.
Элементы IIIA группы
Элементы IIIA группы: бор В, алюминий Al, галлий Ga, индий In и таллий Tl — имеют мало стабильных изотопов, что характерно для атомов с нечетными порядковыми номерами. Электронная конфигурация внешнего энергетического уровня в основном состоянии ns2nр1 характеризуется наличием одного неспаренного электрона.
В возбужденном состоянии элементы IIIA группы содержат три неспаренных электрона, которые, находясь в sp2-гибридизации, принимают участие в образовании трех ковалентных связей. При этом у атомов остается одна незанятая орбиталь.
Поэтому многие ковалентные соединения элементов IIIA группы являются акцепторами электронной пары (кислоты Льюиса), т.е. могут образовывать четвертую ковалентную связь по донорно-акцепторному механизму, создавая которую, они изменяют геометрию своего окружения — она из плоской становится тетраэдрической (состояние sp3-гибридизации).
У атомов алюминия и его тяжелых аналогов появляются вакантные d-орбитали, возрастает радиус атома. Галлий, индий и таллий расположены в Периодической системе сразу за металлами d-блока, поэтому их часто называют постпереходными элементами.
Заполнение d-оболочки сопровождается последовательным сжатием атомов, в 3d-pяду оно оказывается настолько сильным, что нивелирует возрастание радиуса при появлении четвертого энергетического уровня. В результате d-сжатия ионные радиусы алюминия и галлия близки, а атомный радиус галлия даже меньше, чем алюминия.
Для таллия, свинца, висмута и полония наиболее устойчивы соединения со степенью окисления +1, +2, +3, +4 соответственно.
Свойство | B | Al | Ga | In | Tl |
Заряд ядра Z | 5 | 13 | 31 | 49 | 81 |
Электронная конфигурация в основном состоянии | [He]2s22p1 | [Ne]3s23p1 | [Ar]3d104s24p1 | [Kr]4d105s25p1 | [Xe]4f145d106s26p1 |
Атомный радиус, нм | 0,083 | 0,143 | 0,122 | 0,163 | 0,170 |
Энергия ионизации, кДж/моль:I1I2I3 | 80124273660 | 57718172745 | 57919792963 | 55818212704 | 58919712878 |
Электроотрицательность | 2,04 | 1,61 | 1,81 | 1,78 | 2,04 |
Для соединений элементов IIIA группы наиболее характерна степень окисления +3. В ряду бор-алюминий-галлий-индий-таллий устойчивость таких соединений уменьшается, а устойчивость соединений со степенью окисления +1, напротив, увеличивается.
Энергия связи М—Hal в галогенидах последних при переходе от легких к более тяжелым элементам М уменьшаются, амфотерные свойства оксидов и гидроксидов смещаются в сторону большей основности, склонность катионов к гидролизу (взаимодействию с водой) ослабевает.
Химия индия и особенно галлия вообще очень близка химии алюминия. Соединения этих металлов в низших степенях окисления (Ga2O, Ga2S, InCl и др.) в водных растворах диспропорционируют. Для таллия состояние +1, напротив, является наиболее устойчивым из-за инертности электронной пары 6s2.
Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/harakteristika-metallov-ia-iiia-grupp
2.3 Структура периодической системы: периоды, группы, подгруппы
Взаимодействие тетраалкинилидов олова с хлорангидридами карбоновых кислот
Комплексные соединения палладия хорошо катализируют ацилирование IIIA группы металлов. Исследования реакции показали способность хлорангидридов карбоновых кислот к ацилированию R3A1 и R2RAl реагентов в присутствии палладиевых катализаторов…
Строение атома водорода в периодической системе
Первый элемент периодической системы (1-й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе, поэтому в таблицах условно помещается в IА группу и/или VIIA-группу…
Воздействие окружающей среды на металлы
I. Строение атомов металлов. Положение металлов в периодической системе. Группы металлов
В настоящее время известно 105 химических элементов, большинство из них – металлы. Последние весьма распространены в природе и встречаются в виде различных соединений в недрах земли, водах рек, озер, морей, океанов, составе тел животных…
Качественное обнаружение вольфрама
Положение в периодической системе химических элементов
Вольфрам – элемент VI группы периодической системы химических элементов, его порядковый номер 74, атомная масса 183,85. Природный вольфрам состоит из смеси стабильных изотопов с массами: 180 (0,16%) 182 (26,35%) 183 (14,32%) 184 (30,68%) 186 (28…
Классы неорганических веществ. Растворы электролитов. Размеры атомов и водородная связь
2. Размеры атомов. Связь размера атома с положением в периодической системе элементов. Понятие об ионах
Атом состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных частиц_электронов, составляющих его электронную оболочку. Сумма зарядов электронов равна по модулю положительному заряду ядра…
2. Характеристика по положению в периодической системе Д. И. Менделеева. Физические свойства
Что же представляет собой этот элемент? Магний — элемент II группы периодической системы Д. И. Менделеева; третьего периода, главной подгруппы, порядковый номер 12; атомная масса 24,312 у.е. Это легкий (плотность 1…
f2. Местоположение в периодической системе
Элемент побочной подгруппы шестой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 42. Обозначается символом Mo (лат. Molybdaenum)…
Периодическая система элементов и история ее создания
Описание периодической системы
В таблице помещены символы элементов, принятые в 1961 г. Международным съездом Союза чистой и прикладной химии. Для ряда элементов в литературе употребляются различные названия; например, 86-й элемент наз. радоном (Rn), или эманацией (Еm )…
Получение фосфорнокислого цинка
1.1.2 Положение цинка в периодической системе Д.И. Менделеева
Цинк – элемент побочной подгруппы второй группы, четвертого периода периодической системы химических элементов Д.И. Менделеев, с атомным номером 30. Атомная масса 65,39. Конфигурация внешних электронных оболочек атома 3d10 4s2. Степень окисления +2…
Применение органических реагентов в аналитической химии
4.2 Индикаторы группы азосоединений
Индикаторы группы азосоединений (азоиндикаторы) – это многочисленная группа индикаторов, являющихся производными пара-аминобензола и пара-диметиламинобензола, которые сами по себе практически не растворимы в воде…
fРтуть – элемент таблицы периодической системы химических элементов Д. И. Менделеева
80 Ртуть Hg 200,59 4f145d106s2 Ртуть — элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum) [1]…
Общая характеристика элементов подгруппы азота
Азот фосфор Мышьяк Сурьма Висмут Строение внешнего электронного слоя 2sІ2pі 3sІ3pі 4sІ4pі 5sІ5pі 6sІ6pі Энергия ионизации атома, эВ 14,53 10,484 9,81 8,636 7,287 Относительная электроотрицательность 3,07 2,2 2,1 1,8 1,7 Радиус атома, нм 0…
2.1. Характеристика кобальта по положению в периодической системе. Электронная формула
Со, химический элемент с атомным номером 27. Его атомная масса 58,9332. Природный кобальт состоит из двух стабильных нуклидов: 59Со (99,83% по массе) и 57Со (0,17%). В периодической системе элементов Д. И…
Характеристика элементов подгруппы азота
f1. Характеристика элементов подгруппы азота
Азот – важнейшая составная часть атмосферы (78% ее объема). В природе встречается в белках, в залежах нитрата натрия. Природный азот состоит из двух изотопов: 14N (99,635% массы) и 15N (0,365% массы). Фосфор входит в состав всех живых организмов…
1.1 Элементы первой группы периодической системы
Элементы первой группы периодической системы характеризуются прежде всего одинаковым строением внешнего электронного слоя атомов, в котором у всех членов группы содержится только один электрон…
Источник: http://him.bobrodobro.ru/5259
Add comment