Kievuz

УГЛЕРОД В ОРГАНИЗМЕ

Содержание

Углекислый газ в организме человека: образование, транспорт кровью, влияние на здоровье

УГЛЕРОД В ОРГАНИЗМЕ

Из курса биологии (анатомии) школьной программы известно, что наш организм дышит кислородом (O2). Однако на уроках не рассматривается вопрос о том, какое значение имеет углекислый газ в крови для нашего здоровья? Многие не знают, что CO2 влияет на здоровье всех органов человека и регулирует биохимические процессы, протекающие в организме.

Дыхание

При изучении дыхания и образования диоксида углерода в теле человека иногда путают углекислый и угарный газы между собой. Угарный газ имеет химическую формулу CO и совершенно другие свойства.

Оксид углерода (CO), это ядовитое вещество, которое при попадании через легкие в кровь даже в минимальном количестве опасно для жизни и здоровья.

Дыхание происходит следующим образом — человек сначала выдыхает углекислоту, а потом вдыхает кислород:

  • В результате биохимических процессов при расщеплении жиров и белков в клетках происходит процесс образования углекислого газа в организме человека. Этот газ выделяется из клеток в капилляры, а затем поступает в кровь. При накоплении крови газом нервная система подает сигнал в мозг о выделении излишков двуокиси углерода за пределы нашего тела. Красные кровяные тельца (эритроциты) транспортируют молекулы углекислоты в виде химических соединений бикарбонатов и связанных с гемоглобином к альвеолам легких.
  • В альвеолах происходит обмен молекул углекислого газа на молекулы O2, которые распространяются по всему организму. Эритроциты переносят молекулы кислорода к органам и тканям, связывая его с гемоглобином, а взамен опять забирают продукт жизнедеятельности этих клеток – CO2.

Доказанным фактом считается то, что углекислота, это основатель дыхательных процессов, а не кислород, как считалось ранее. Двуокись углерода является необходимым газом для дыхания человека наравне с O2.

При выдохе человек выдыхает не только CO2, из легких уходит также избыточный O2. Рефлекс дыхания разделяется в 2 этапа:

  1. При выдыхании происходит снижение давления в легких, купол диафрагмы поднимается, легкие сжимаются, концентрация CO2 в крови повышается. Кровь движется по венам и окрашивается темный, почти черный цвет.
  2. За выдохом идет вдох. При вдохе грудная клетка расширяется, диафрагма опускается. Осуществляется отдача от гемоглобина через альвеолы в легкие и выброс в атмосферу диоксида углерода. Там же в альвеолах происходит прием гемоглобином молекулы O2. Кровь переходит на следующий круг и движется по артериям. Она окрашивается в ярко-розовый цвет.

Нормальный здоровый человек дышит ровно и регулярно. Учащенное дыхание или с задержкой, если это не вызвано большими физическими или психологическими нагрузками, считается сигналом о серьезных заболеваниях организма.

Транспорт кровью и связь с кислородом

Существует два круга кровообращения в организме: большой артериальный и малый венозный. По большому кругу транспортируется артериальная кровь, насыщенная кислородом. По малому кругу движется венозная кровь, насыщенная CO2.

Раньше существовало мнение, что с выдохом углекислый газ в организме человека не остается. Однако как показывают исследования, в артериальной крови всегда присутствует определенное количество углекислоты.

Концентрация ее небольшая, в пределах 6,0-7,0%, но если она превышает или наоборот, меньше этого количества, то для организма это плохо. Появляется либо переизбыток O2 в крови (Гипероксия), либо его недостаток (Гипоксемия). Это происходит потому, что обмен этими газами взаимосвязан.

Чтобы эритроцит мог поглотить молекулу кислорода и связать ее с гемоглобином, он должен удалить в атмосферу молекулу диоксида углерода.

Зависимость здоровья от содержания углекислоты

При физических нагрузках обменные процессы в клетках ускоряются, чтобы вывести большее количество углекислоты, человеку необходимо чаще и глубже дышать. Процесс происходит рефлекторно.

В таких случаях опасно находится в помещении с высокой концентрацией CO2, так как вместе с O2 человек вдыхает двуокись углерода. Это приводит к повышению ее концентрации в крови, а дальше к приступам удушья.

Появляются головокружение, тошнота, вялость, учащается сердцебиение и дыхание (Гиперкапния).

Изучая процессы дыхания и газообмена в организме человека, ученые пришли к выводу, что опасен для здоровья не столько недостаток кислорода, сколько избыток диоксида углерода в воздухе.

Газ CO2 не является сильнодействующим отравляющим веществом, но так как гемоглобин занятый углекислым газом не принимает кислород, то происходит эффект удушения, вплоть до летального исхода.

Высокая концентрация этого вещества в крови приводит к гибели эритроцитов и воспалению стенок кровеносных сосудов. Так происходит если наличие углекислого газа в воздухе более 3 % в воздухе. При таком уровне человек чувствует себя слабым, его тянет на сон. При концентрации 5% проявляется удушающий эффект, головные боли, головокружение.

Желудочно-кишечный тракт

Углекислый газ в организм попадает не только при дыхании, но и вместе с пищей. Углерод содержится практически во всех органических веществах, наибольшая концентрация содержится в продуктах растительного происхождения. Больше всего его образуется при расщеплении легкоусвояемых углеводов.

В результате пищеварения, пища расщепляется на два компонента: CO2 и воду. Далее происходит восстановление диоксида углерода до глюкозы. Процесс этот называется гликолиз и происходит он в печени. Глюкоза, это питательный элемент для клеток организма.

Углекислота влияет на химический состав жидкости в теле человека, хотя и не так значительно, но при сильном понижении или превышении может оказывать губительное воздействие.

В организме почти все процессы жизнедеятельности клеток происходят при определенном уровне кислотно-щелочного баланса, который скорее близок к нейтральной воде, чем к кислоте. Наличие повышенной концентрации CO2 в употребляемых продуктах сильно меняет состав жидкости в теле человека.

Это также влияет на протекание биохимических процессов. Происходит нарушение обмена веществ, гибель клеток или неправильный процесс их деления, что очень опасно.

Продукты и их кислотно-щелочной баланс

Поэтому продукты, содержащие CO2 в свободном состоянии (газировка) во многих странах запрещены к продаже.

Наибольший вред они наносят организму:

  • При любых заболеваниях желудочно-кишечного тракта, в том числе хронических. Так как при приеме в пищу таких продуктов, происходит раздражение слизистой желудка. Они стимулируют выработку ферментов и повышают кислотность желудочного сока, что приводит к обострению имеющихся воспалительных процессов, образованию или углублению язвочек.
  • Детям, до трех лет не стоит давать такие продукты, потому что их организм еще не совсем сформировался. Поэтому углекислота может привести к нарушению обмена веществ в организме и в будущем стать причиной высокой хрупкости костей.
  • Диоксид углерода может вызвать аллергическую реакцию у человека.
  • При наличии лишнего веса нельзя употреблять такие продукты, так как полнота, это следствие нарушения обмена веществ. А употребление продуктов с высоким содержанием CO2 приведет только к усугублению ситуации.

Во многих западных странах принят закон, в соответствии с которым наличие углекислого газа в продуктах не должно превышать 0,4%. Исключение дается только простой минеральной воде с газом, но только в том случае, если она содержит незначительное количество диоксида углерода. Но и это допустимо только по разрешению или рекомендации врача, особенно при болезнях желудка.

Красота и здоровье

Однако CO2 имеет и положительно действие на организм человека. Так диоксид углерода является очень мощным обеззараживающим средством. Его используют в медицине и косметологии.

Применяют углекислый газ совместно с другими компонентами, наружно, а также производят инъекции (Карбокси-терапия).

Крем или гель, содержащий углекислоту, хорошо обеззараживает и очищает кожу, а непосредственное введение его во внутренние ткани тела помогает бороться с целлюлитом.

Источник: https://UglekislyGaz.ru/dioksid-ugleroda/co2-i-organizm-cheloveka/

Углерод — химические и физические свойства

УГЛЕРОД В ОРГАНИЗМЕ

1001student.ru > Химия > Углерод — химические и физические свойства

Углерод – это, наверное, один из самых впечатляющих элементов химии на нашей планете, который обладает уникальной способностью образовывать огромное множество различных органических и неорганических связей.

Одним словом, углеродные соединения, которые обладают уникальными характеристиками – основа жизни на нашей планете.

  • Что такое углерод
  • Физические свойства
  • Строение атома
  • Химические свойства
  • Получение углерода
  • История открытия
  • Роль углерода в организме человека
  • Нахождение в природе углерода
  • Применение углерода

Что такое углерод

В химической таблице Д.И. Менделеева углерод находится под шестым номером, входит в 14 группу и носит обозначение «С».

Физические свойства

Это водородное соединение, входящее в группу биологических молекул, молярная масса и молекулярная масса которого – 12,011, температура плавления составляет 3550 градусов.

Степень окисления данного элемента может быть: +4, +3, +2, +1, 0, -1, -2, -3, -4, а плотность составляет 2,25 г/см3.

В агрегатном состоянии углерод — твердое вещество, а кристаллическая решетка — атомная.

Углерод имеет следующие аллотропные модификации:

  • алмаз;
  • графит;
  • фуллерен;
  • карбин.

Строение атома

Атом вещества имеет электронную конфигурацию вида — 1S22S22P2. На внешнем уровне у атома 4 электрона, находящиеся на двух разных орбиталях.

Если же брать возбужденное состояние элемента, то его конфигурация становится 1S22S12P3.

К тому же атом вещества может быть первичным, вторичным, третичным и четвертичным.

Химические свойства

Пребывая в нормальных условиях, элемент инертен и во взаимодействие с металлами и неметаллами вступает при повышенных температурах:

  • взаимодействует с металлами, вследствие чего образуются карбиды;
  • вступает в реакцию с фтором (галоген);
  • при повышенных температурах взаимодействует с водородом и серой;
  • при повышении температуры обеспечивает восстановление металлов и неметаллов из оксидов;
  • при 1000 градусах вступает во взаимодействие с водой;
  • при повышении температуры горит.

Получение углерода

Углерод в природе можно найти в виде черного графита либо же, что очень редко, в виде алмаза. Ненатуральный графит получают с помощью реакции кокса с кремнеземом.

А ненатуральные алмазы получают, применяя тепло и давление вместе с катализаторами. Так металл расплавляется, а получившийся алмаз выходит в виде осадка.

Добавление азота приводит к получению желтоватых алмазов, а бора – голубоватых.

История открытия

Углерод использовался людьми с давних времен. Грекам был известен графит и уголь, а алмазы впервые нашлись в Индии. К слову, в качестве графита люди часто принимали схожие по виду соединения. Но даже несмотря на это, графит широко использовался для письма, ведь даже слово «графо» с греческого языка переводится как «пишу».

В настоящее время графит используется так же в письме, в частности его можно встретить в карандашах. В начале 18 века в Бразилии началась торговля алмазами, были открыты многие месторождения, а уже во второй половине 20 века люди научились получать ненатуральные драгоценные камни.

На настоящий момент ненатуральные алмазы используются в промышленности, а настоящие – в ювелирной сфере.

Роль углерода в организме человека

В тело человека углерод попадает вместе с пищей, в течение суток – 300 г. А общее количество вещества в человеческом организме составляет 21% от массы тела.

Из данного элемента состоят на 2/3 мышцы и 1/3 костей. А выводится из тела газ вместе с выдыхаемым воздухом либо же с мочевиной.

Стоит отметить: без этого вещества жизнь на Земле невозможна, ведь углерод составляет связи, помогающие организму бороться с губительным влиянием окружающего мира.

Таким образом, элемент способен составлять продолжительные цепи либо же кольца атомов, которые представляют собой основу для множества других важных связей.

Нахождение в природе углерода

Элемент и его соединения можно встретить повсюду. В первую очередь отметим, что вещество составляет 0,032% от общего количества земной коры.

Одиночный элемент можно встретить в каменном угле. А кристаллический элемент находится в аллотропных модификациях. Также в воздухе постоянно растет количество углекислого газа.

Большую концентрацию элемента в окружающей среде можно встретить в качестве соединений с различными элементами. Например, двуокись углерода содержится в воздухе в количестве 0,03%. В таких минералах как известняк или же мрамор, содержатся карбонаты.

Все живые организмы несут в себе соединения углерода с иными элементами. К тому же остатки живых организмов становятся такими отложениями, как нефть, битум.

Применение углерода

Соединения этого элемента широко используются во всех сферах нашей жизни и перечислять их можно бесконечно долго, поэтому мы укажем несколько из них:

  • графит используется в грифелях карандашей и изготовлении электродов;
  • алмазы нашли свое широкое применение в ювелирной сфере и в буровом деле;
  • углерод используют как восстановитель для выведения таких элементов, как железная руда и кремний;
  • активированный уголь, состоящий в основном из этого элемента, широко используется в медицинской области, промышленности и в быту.

Источник: https://1001student.ru/himiya/uglerod.html

Самые интересные факты о Углероде

УГЛЕРОД В ОРГАНИЗМЕ

Углерод — это невероятный элемент. Расположить атомы углерода в одну сторону, и они становятся мягкими, податливее графита.

Переустановите расположение, и — престо! — атомы образуют алмаз, один из самых твердых материалов в мире.

Углерод также является ключевым компонентом для большей части жизни на Земле; пигмент, который сделал первые рисунки; и основой для технологических чудес, таких как графен, который является материалом, более сильным, чем сталь, и более гибким, чем резина. [См. Периодическую таблицу элементов].

Углерод встречается в природе как углерод-12, что составляет почти 99% углерода во Вселенной; углерод-13, что составляет около 1%, а углерода-14, что составляет незначительную сумму от общего углерода, а это очень важно в знакомствах органических объектов.

Интересные факты о Углероде

Свойства углерода

Углерод является уникальным по своим свойствам, поскольку он образует ряд компонентов выше, чем общее добавление всех других элементов в сочетании друг с другом.

Физические и химические свойства углерода зависят от кристаллической структуры элемента.

Свойства углерода

  • Атомный номер (число протонов в ядре): 6
  • Атомный символ (на периодической таблице элементов): с
  • Атомная масса (средняя масса атома): 12.0107
  • Плотность: 2.2670 граммов на кубический сантиметр
  • Фазы при комнатной температуре: Твердый
  • Точка плавления: 6,422 градусов по Фаренгейту (3,550 градусов C)
  • Точка кипения: 6,872 Ф (3,800 с) (сублимации)
  • Количество изотопов: 15 общий; двух стабильных изотопов, в которых расположены атомы одного элемента с разным количеством нейтронов.
  • Наиболее распространенных изотопов: углерода-12 (6 протонов, 6 нейтронов и 6 электронов) и углерода-13 (6 протонов, 7 нейтронов и 6 электронов)
  • Радиус Vanderwaals 0.091 нм
  • Ионный радиус 0.26 нм (-4) ; 0,015 нм (+4)
  • Изотопы 3
  • Электронные оболочки [ Он ] с 2S22Р2
  • Энергия первой ионизации 1086.1 кДж.моль -1
  • Энергия второй ионизации 2351.9 кДж.моль -1
  • Энергия третьего ионизации 4618.8 кДж.моль -1

Углерод: от звезд к жизни

Согласно шестому по численности числу элементов во Вселенной, углерод образуется в внутри звезд в реакции, называемой тройным альфа-процессом, согласно Центру астрофизики.

В старых звездах, которые сжигали большую часть своего водорода, сохраняется оставшийся гелий. Каждое ядро гелия имеет два протона и два нейтрона. При очень высоких температурах — более 100 000 000 Кельв.

(179,999,540,6 F) — ядра гелия начинают сливаться, сначала как пары в неустойчивые 4-протонные бериллиевые ядра, а в конечном итоге, по мере того, как появляются достаточное количество ядер бериллий, в бериллий и гелий.

Конечный результат: атомы с шестью протонами и шестью нейтронами — углеродом.

Углерод — производитель шаблонов. Он может связываться с самим собой, образуя длинные упругие цепи, называемые полимерами. Он может также связываться с четырьмя другими атомами из-за его расположения электронов.

Атомы расположены как ядро, окруженное электронным облаком, причем электроны движутся вокруг на разных расстояниях от ядра.

Согласно данным Университета Калифорнии Дэвис, химики понимают эти расстояния как оболочки и определяют свойства атомов по тому, что находится в каждой оболочке.

У углерода есть две электронные оболочки, первая из которых содержит два электрона, а вторая — четыре из возможных восьми пространств. Когда атомы связаны, они делят электроны в их внешней оболочке.

Углерод имеет четыре пустых пространства в своей внешней оболочке, что позволяет ему связываться с четырьмя другими атомами.

(Он также может стабильно связываться с меньшим числом атомов путем образования двойных и тройных связей).

Другими словами, у углерода есть варианты. И он их использует: было обнаружено около 10 миллионов углеродных соединений, и ученые считают, что углерод является краеугольным камнем для 95 процентов известных соединений. Невероятная способность углерода связываться со многими другими элементами является основной причиной того, что это имеет решающее значение почти для всей жизни.

Углерод в организмах

Открытие углерода уходит в историю. Элемент был известен доисторическим людям в форме древесного угля.

По словам Всемирной ассоциации угля, углерод как уголь по-прежнему является основным источником топлива во всем мире, обеспечивая около 30 процентов энергии во всем мире.

Уголь также является ключевым компонентом в производстве стали, а графит, еще одна форма углерода, является обычной промышленной смазкой.

Углерод-14 представляет собой радиоактивный изотоп углерода, используемый археологами для современных организмов и останков. Углерод-14 естественным образом встречается в атмосфере.

По словам Университета штата Колорадо, растения принимают его в дыхании, в котором они превращают сахара, полученные во время фотосинтеза, в энергию, которую они используют для роста и поддержания других процессов. Живые организмы включают углерод-14 в свои тела, употребляя в пищу растения или других животных, питающихся растениями.

По данным Университета Аризоны, углерод-14 имеет период полураспада 5730 лет, а это означает, что после этого времени половина углерода-14 в образце распадается.

Поскольку организмы перестают принимать углерод-14 после смерти, ученые могут использовать период полураспада углерода-14 как своего рода часы, чтобы измерить, сколько времени прошло с момента смерти организма. Этот метод работает на некогда живых организмах, включая предметы из дерева или другого растительного материала.

Интересные факты о Углероде

Углерод получает свое название от латинского слова carbo, что означает уголь.

Интересные факты о Углероде

  • Бриллианты и графит являются одними из самых твердых и самых мягких природных материалов, известных, соответственно. Единственная разница между ними — их кристаллическая структура.
  • Согласно Энциклопедии Земли, углерод составляет 0,032 процента земной литосферы (коры и внешней мантии). Грубая оценка веса литосферы геологом Университета Ла Сальла Дэвидом Смитом составляет 300 000 000 000 000 000 000 000 (или 3 * 10 23) фунтов, что делает приблизительный вес углерода в литосфере 10 560 000 000 000 000 000 000 000 (или 1.056 * 10 22) фунтов.
  • Двуокись углерода (атом углерода плюс два атома кислорода) составляет около 0,04 процента земной атмосферы, согласно Национальному управлению океанических и атмосферных исследований (NOAA) — увеличение по сравнению с доиндустриальными временами из-за сжигания ископаемого топлива.
  • Окись углерода (атом углерода плюс один атом кислорода) является запахом газа, образующегося при сжигании ископаемого топлива. Угарный газ убивает путем связывания с гемоглобином, кислородсодержащим соединением в крови. Углекислый газ связывается с гемоглобином в 210 раз сильнее, чем кислород, связывается с гемоглобином, эффективно вытесняя кислород.
  • Алмаз, самая яркая версия углерода, формируется под большим давлением глубоко в земной коре. Самый крупный алмаз из драгоценного камня, который когда-либо был найден, был алмазом Cullinan, который был обнаружен в 1905 году. Необработанный алмаз составлял 3 106,75 карата. Самый большой камень, вырезанный из алмаза, на 530,2 карата, является одним из Королевских Драгоценностей Соединенного Королевства и известен как Великая Звезда Африки.
  • Согласно данным исследования 2009 года в журнале «Археологическая наука», татуировки Ötzi the Iceman, трупов которым 5300 лет, найденные в Альпах, были сделаны из углерода. Были сделаны небольшие разрезы на коже, уголь втирался, возможно, как часть лечения иглоукалыванием.

Новые молекулы углерода

Молекулы углерода — это давно изученный элемент, но это не значит, что его больше не найти. Фактически, тот же элемент, который наши доисторические предки жгли как древесный уголь, может стать ключом к технологическим материалам следующего поколения.

В 1985 году Рик Смалли и Роберт Керл из Университета Райса в Техасе и их коллеги обнаружили новую форму углерода. По словам Американского химического общества, испарив графит с помощью лазеров, ученые создали таинственную новую молекулу из чистого углерода.

Эта молекула оказалась сферой шара, состоящей из 60 атомов углерода. Новая молекула углерода теперь более известна как «buckyball». Исследователи, которые её обнаружили, выиграли Нобелевскую премию по химии в 1996 году.

Было установлено, что бакиболы препятствуют распространению ВИЧ, согласно исследованию, опубликованному в 2009 году в Журнале химической информации и моделирования; медицинские исследователи работают над прикреплением лекарств, молекулы к молекулам, к бакиболам, чтобы доставлять лекарства непосредственно на участки инфекции или опухоли в организме; это включает исследования Колумбийского университета.

С тех пор были обнаружены другие новые чистые молекулы углерода — фуллерены, в том числе эллиптические и углеродные нанотрубки с удивительными проводящими свойствами.

Углеродная химия все еще достаточно горячая.

Исследователи из Японии и США занимаются выяснением того, как связывать атомы углерода вместе с использованием атомов палладия, что позволяет производить сложные новые молекулы углерода.

Что такое Графен

Графен

Говоря простым языком, графен, представляет собой тонкий слой чистого углерода; это отдельный, плотно уложенный слой атомов углерода, которые скреплены вместе в гексагональной гексагональной решетке.

В более сложных условиях, это аллотроп углерода в структуре самолет из SP2 атомами с в молекуле длина связи 0.142 нм. Слоев графена, сложенных на вершине друг друга, образуют графит, с межплоскостным расстоянием 0.

335 нм.

Это тончайшее соединение, известное человеку, в один атом толщиной, легкий материал известен (с 1 кв. м идет около 0.77 миллиграмм), сильнейший обнаруженное соединение (от 100 до 300 раз прочнее стали и с прочностью на жесткость 150,000,000 пс), лучшим проводником тепла, при комнатной температуре (в (4.84±0.44) × 103 к (5.

30±0.48) × 103 Вт·м−1·К−1) а также лучший проводник электричества (исследования показали, подвижность электронов при значениях более 15 000 см2·в−1·с−1). Другие известные свойства графена его уникальные уровни поглощения света в πα ≈ 2.3% белого света, и его потенциальную пригодность для использования в спиновой транспорт.

Имея это в виду, вы могли быть удивлены знать, что углерод является вторым наиболее распространенным материалом в организме человека и четвертый по распространенности элемент во Вселенной (по массе), после водорода, гелия и кислорода.

Это делает углерод химической основой для всех известных форм жизни на земле, поэтому графен вполне может быть экологически чистым, устойчивым решением для почти безграничного количества приложений.

С момента открытия (или, точнее, механического получения) графена, достижения в рамках разных научных дисциплин взорвались, с огромными достижениями, особенно в области электроники и биотехнологии.

Углеродные нанотрубки

Углеродная нанотрубка (УНТ) представляет собой крохотную, соломенно-подобную структуру, состоящую из атомов углерода. Эти трубки чрезвычайно полезны в широком спектре электронных, магнитных и механических технологий. Диаметры этих трубок настолько малы, что они измеряются в нанометрах. Нанометр составляет одну миллиардную часть метра — примерно в 10 000 раз меньше человеческого волоса.

Углеродные нанотрубки

Углеродные нанотрубки по меньшей мере в 100 раз прочнее стали, но только на одну шестую, как тяжелые, поэтому они могут добавлять силу практически к любому материалу. Они также лучше, чем медь при проведении электричества и тепла.

Нанотехнологии применяются чтобы превратить морскую воду в питьевую. В новом исследовании ученые из Национальной лаборатории Лоуренса Ливермора (LLNL) разработали процесс углеродных нанотрубок, который может вывести соль из морской воды гораздо эффективнее традиционных технологий.

В исследовании нанотрубок ученые подражали тому, как структурированы биологические мембраны: по существу матрица с порами внутри мембраны.

Они использовали особенно мелкие нанотрубки — более чем в 50 000 раз тоньше человеческого волоса.

Эти крошечные нанотрубки обеспечивают очень высокий поток воды, но настолько узкий, что через трубку может проходить только одна молекула воды. И самое главное, солевые ионы слишком велики, чтобы вписаться в трубку.

Исследователи считают, что новое открытие имеет важные последствия для следующего поколения как процессов очистки воды, так и технологий с высоким потоком мембран.

Источник: Территория знаний

Жмите кнопку «» в соцсетях, чтобы не потерять информацию

Источник: https://tagweb.ru/2017/09/30/interesnye-fakty-o-uglerode/

Углеро́д (химический символ — C) — химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы химических элементов, порядковый номер 6, атомная масса природной смеси изотопов 12,0107 г/моль.

История

Углерод в виде древесного угля применялся в глубокой древности для выплавки металлов. Издавна известны аллотропные модификации углерода — алмаз и графит.На рубеже XVII—XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем.

Эта теория признавала наличие в каждом горючем теле особого элементарного вещества — невесомого флюида — флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь — это почти чистый флогистон.

Именно этим объясняли, в частности, «флогистирующее» действие угля, — его способность восстанавливать металлы из «известей» и руд. Позднейшие флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество.

Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur).

Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

В 1791 году английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокалённым мелом, в результате чего образовывались фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Ещё в 1751 г.

французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы.

Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины и пришёл к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода — графит — в алхимическом периоде считался видоизменённым свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счёл его сернистым телом особого рода, особым минеральным углём, содержащим связанную «воздушную кислоту» (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Происхождение названия

Международное название Carboneum происходит от лат. carbo — уголь. Слово это очень древнего происхождения. Его сопоставляют с cremare — гореть; корень саг, cal, русское гар, гал, гол, санскритское ста означает кипятить, варить.

Со словом «carbo» связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от kohle — уголь (старогерманское kolo, швед. kylla — нагревать).

Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз (Diamante) происходит от др.-греч. αδαμας — несокрушимый, непреклонный, твёрдый, а графит от др.-греч. γράφω — пишу.

В начале XIX века старое слово уголь в русской химической литературе иногда заменялось словом «углетвор» (Шерер, 1807; Севергин, 1815); с 1824 года Соловьёв ввёл название углерод.

Нахождение в природе

углерода в земной коре 0,1 % по массе. Свободный углерод находится в природе в виде алмаза и графита.

Основная масса углерода в виде природных карбонатов (известняки и доломиты), горючих ископаемых — антрацит (94—97 % С), бурые угли (64—80 % С), каменные угли (76—95 % С), горючие сланцы (56—78 % С), нефть (82—87 % С), горючих природных газов (до 99 % метана), торф (53—56 % С), а также битумы и др.

В атмосфере и гидросфере находится в виде диоксида углерода СО2, в воздухе 0,046 % СО2 по массе, в водах рек, морей и океанов в ~60 раз больше. Углерод входит в состав растений и животных (~18 %).В организм человека углерод поступает с пищей (в норме около 300 г в сутки).

Общее содержание углерода в организме человека достигает около 21 % (15 кг на 70 кг массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина).

Кругооборот углерода в природе включает биологический цикл, выделение СО2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу: с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов — в почву и в виде СО2 — в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений.

Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

В природе встречается минерал шунгит,в котором содержится как твердый углерод (≈25%), так и значительные количества оксида кремния (≈35%).

Применение

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Алмазным напылением обладают шлифовальные насадки бормашин.

Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем.

Исключительно высокая теплопроводность алмаза (до 2000 Вт/м·К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области.

В фармакологии и медицине широко используются различные соединения углерода — производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения.

Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) — для лечения кожных заболеваний; радиоактивные изотопы углерода — для научных исследований (радиоуглеродный анализ).Углерод играет огромную роль в жизни человека.

Его применения столь же разнообразны, как сам этот многоликий элемент. В частности углерод является неотъемлемой составляющей стали (до 2,14 % масс.) и чугуна (более 2,14 % масс.)

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод — основа жизни.

Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возвращением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) — один из важнейших источников энергии для человечества.

Источник: Википедия

Другие заметки по химии

Источник: http://edu.glavsprav.ru/info/c/

Физиологическая роль углерода и кремния и их свойства в организме человека

УГЛЕРОД В ОРГАНИЗМЕ

МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ

ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Московский государственный университет пищевых производств»

Институт ветеринарной экспертизы, санитарии и экологии

Кафедра неорганической и аналитической химии

Реферат по химии

Тема: »Физиологическая роль углерода и кремния

и их свойства в организме человека»

                                                                           Выполнила: студентка 1 курса

                                                                           6 гр., 2 п.гр

                                                                           Павлова Ольга

                                                                           Проверила:

                                                                           Буданцева Татьяна Валентиновна

Москва 2013 

Оглавление

1. Введение. 3

2. Физиологическая роль углерода. 4

2.1. Некоторые свойства углерода. 4

3. Физиологическая роль кремния. 5

3.1. «Пожиратели» кремния, дефицит. 6

3.2. Разновидности кремния. 6

3.2.1. Кремний – биокатализатор. 8

4. Вывод. 8

1. Введение

Углерод (лат. Carboneum), С – химический элемент IV группы периодической системы Менделеева.

Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз – как драгоценный камень. Значительно позднее стал применяться графит для изготовления тиглей и карандашей.

В 1778 году К. Шелле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А.

Лавуазье (1772) по изучениям горени алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Угларод как химический элемент был признан только в 1789 А. Лавуазье.

Латинское название carboneum углерод получил от carbo – уголь.

Ближайший аналог углерода – кремний – является 3-им (после кислорода и водорода) по распространенности элементом: на его долю приходится 16,7% от общего числа атомов земной коры.

Если углерод можно рассматривать как основной элемент для всей органической жизни, то кремний играет подобную же роль по отношению к твердой земной коре, так как главная часть её массы состоит из силикатных пород, обычно представляющих собой смеси различных соединений кремния с кислородом и рядом других элементов. Весьма часто встречается и свободная двуокись кремния (SiO2), главным образом в виде обычного песка.

Свободный кремний впервые получен в 1823г. Природный элемент слагается из трёх изотопов – 28Si (92.2%), 29Si (4.7) и 30Si (3.1).

2. Физиологическая роль углерода

Углерод имеет очень большое значение из-за его исключительно важной роли в живой природе. Соединения углерода являются основой растительных и живых организмов, то есть углерод является главным элементом жизни.

Чем сложнее организм, тем, как правило, выше в нем содержание углерода (от 0,1 до 30 %). В организме человека на долю углерода приходится 21,15%.

Он входит в состав всех тканей и клеток в форме белков, жиров, углеводов, витаминов и гормонов.

В организм человека углерод поступает с пищей (около 300 г в сутки). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и  мочой (мочевина).

В биомолекулах углерод образует полимерные цепи и прочно соединяется с водородом, кислородом, азотом и другими элементами. Физиологическая роль углерода определяется тем, что этот элемент входит в состав всех органических соединений и принимает участие практически во всех биохимических процессах в организме.

Окисление соединений углерода под действием кислорода приводит к образованию воды и углекислого газа; этот процесс служит для организма источником энергии.

Двуокись углерода СО2 (углекислый газ) образуется в процессе обмена веществ и является стимулятором дыхательного центра, играет важную роль в регуляции дыхания и кровообращения.

В свободном виде углерод не токсичен, но многие его соединения обладают значительной токсичностью: окись углерода СО (угарный газ), четыреххлористый углерод СС14, сероуглерод CS2, соли цианистой кислоты HCN, бензол C6H8 и ряд других. Углекислый газ в концентрации свыше 10% вызывает ацидоз (снижение рН крови), одышку и паралич дыхательного центра.

Длительное вдыхание каменноугольной пыли может привести к антракозу – заболеванию, которое сопровождается отложением угольной пыли в ткани легких и лимфатических узлах, склеротическими изменениями легочной ткани. Токсическое действие углеводородов и других соединений нефти у рабочих, занятых в нефтедобывающей промышленности может проявиться в огрубении кожи, появлении трещин и язв, развитии хронических дерматитов.

2.1. Некоторые свойства углерода

    • Суточное поступление с продуктами питания: 300 г
    • Суточное поступление с воздухом: 3,7 г
    • Резорбция (%): 10%
    • Суточное выведение с воздухом: -300 г
    • Период полувыведения из организма: 37 суток
    • Число атомов в теле человека: 6,4 х 10
    • Число атомов в одной клетке: 6.4 х 10
    • Среднее содержание в человеческом организме:

кг/70 кг :16

кровь: 25000 мг/л

кости: 280000 мг/кг

    • Токсичная доза для человека может быть в форме CO или цианидов.

3. Физиологическая роль кремния

Великий русский ученый В. Вернадский писал, что ни один живой организм не может нормально развиваться при дефиците кремния. Ведь соединения кремния присутствуют в тканях практически всех наших внутренних органов. Дефицит кремния является одной из причин патологического изменения сосудов: инсульта, инфаркта, дисбактериоза, гепатита, ревматизма, полиартрита и других заболеваний

Кремний – это маленькая, но жизненно важная часть всех соединительных тканей, костей, сосудов и хрящей. Дефицит кремния, нередко проявляющийся с возрастом у человека, становится причиной снижения эластичности сосудов, особенно артерий крупного и среднего диаметра.

На этом фоне повышается склонность к формированию в них атеросклеротических бляшек. Кремний, содержащийся в тканях стенок сосудов, препятствует проникновению холестерина в плазму и отложению липидов на стенках сосудов.

С возрастом может снизиться содержание кремния (из-за неправильного питания, особенно молочными продуктами). Это обстоятельство приводит к атеросклерозу, так как стенки сосудов утрачивают свою эластин-ткань, богатую кремнием, ответственную за упругость сосудов. В крови же обычно больших изменений не происходит.

Однако на стенках сосудов образуются холестериновые бляшки – это липиды на кальциевой основе и колонии трихомонад – что приводит к сужению сосудов.

3.1. «Пожиратели» кремния, дефицит

Самыми страшными пожирателями кремния в организме человека являются глисты и грибки. Размножаясь в огромных масштабах, они заселяют практически все ткани человеческого организма. Ленточные и круглые, трематоды, бактериозы и грибки, все они используют наши органы и кровь как среду обитания и стройматериалы.

Чтобы передать информацию о своих качествах потомству, паразиты нуждаются в элементе кремнии – преобразователе энергии, пьезоэлементе. Пожирая его в огромных количествах, они резко сокращают содержание кремния в организме; нарушается порядок передачи энергии от мозга к телу, утрачивается контроль за процессами жизнеобеспечения.

На смену здорового экологического порядка приходит хаос.

Если кремния не хватает, 70 других необходимых микроэлементов вообще не усваиваются.

При недостатке кремния падает уровень лейкоцитов в крови, плохо заживают раны и царапины, снижаются аппетит и иммунитет, могут развиться остеопороз, артрит, атеросклероз, гипертония, язва желудка, туберкулез, стенокардия, аритмия, инфаркт миокарда и инсульт.

При его дефиците ногти и волосы становятся ломкими и сухими, а кожа – дряблой. Большое количество бородавок на коже также может быть вызвано недостатком кремния в организме.

Могут возникать и некоторые нарушения функций головного мозга, так как он играет важную роль в осуществлении нормальной деятельности мозжечка. На фоне дефицита кремния в организме нарушается координация движений, появляется пошатывание при ходьбе, общая слабость, нарастает раздражительность, растерянность.

Беременные женщины, кормящие матери и дети особенно нуждаются в продукта содержащих кремний. Необходимость в кремнии у них в несколько раз выше, чем у взрослого человека. Ведь у растущего организма формируются системы связи мозг – тело, и естественно, потребность в элементе связи значительно выше, чем у взрослого человека. Кремний – основной, структурный элемент связи в организме человека.

3.2. Разновидности кремния.

Кремний бывает темно – серого (такой кремень содержит в себе магний) и красноватого цвета (содержит железо). Для лечебных целей используется только темно – серый (черный) кремень. Происхождение его органогенное, то есть он образовался на Земле при отмирании колоний живых организмов, сохраняя в своем составе раковины и скелеты.

Он зарождался в теплых водоемах Мелового периода, когда появились привычные нам формы жизни. Черный камень донес до нас «память» о воде той эпохи. Камень в воде начинает вырабатывать кремниевую кислоту в гомеопатических дозах, но этого достаточно, чтобы при попадании в организм она могла растворять шлаки, отложения солей в различных органах.

Он способен создавать условия, необходимые для восстановления здоровых, жизнеобеспечивающих процессов. 

3.2.1. Кремний – биокатализатор

Ученые утверждают, что органические остатки в кремнии – это уникальные биокатализаторы (устроители), способные перерабатывать энергию света и в десятки раз ускорять окислительно-восстановительные реакции в водных растворах нашего тела.

Эти биологические вещества являются основой для построения сложных органических соединений – основ живого организма – хлорофилла и гемоглобина.

Эти водные растворы, образующиеся вокруг кремния, играют огромнейшую роль в развитии всего живого и благотворно воздействуют на организм.

В кремниевой воде происходит образование структурной водной системы с электрической решеткой жидких кристаллов кремния так, что в ней нет места патогенным, несимбиотным микроорганизмам и чужеродным химическим элементам. Эти чужеродные примеси вытесняются из воды и выпадают в осадок. 

4. Вывод

Кремний – микроэлемент, постоянно содержащийся в организме человека. Наибольшее его количество содержится в лимфоузлах, соединительной ткани аорты, трахеи, в волосах и коже. Кремний необходим для построения эпителиальных клеток, участвует в процессах оссификации совместно с магнием и фтором.

Кремний играет важную роль в процессе минерализации костной ткани; необходим для поддержания эластичности стенки артерий, оказывает положительное влияние на иммунитет и замедляет процессы старения в тканях организма человека.

Источниками кремния являются бурый рис, свёкла, соевые бобы,

Углерод – важнейший биогенный элемент, составляющий основу жизни на Земле. Значительная часть необходимой организмам энергии образуется в клетках за счет окисления Углерода.

Уникальная роль Углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один элемент периодической системы.

Всего три элемента – С, О и Н – составляют 98% общей массы живых организмов.

2

3

7

Источник: http://student.zoomru.ru/him/fiziologicheskaya-rol-ugleroda-i-kremniya/223416.1772136.s1.html

ovdmitjb

Add comment