Kievuz

ЯДРА ГАЛАТИК И ЗВЕЗДЫ – СРАВНИТЕЛЬНАЯ ХАРАТЕРИСТИКА

Типы галактик

ЯДРА ГАЛАТИК И ЗВЕЗДЫ – СРАВНИТЕЛЬНАЯ ХАРАТЕРИСТИКА

Понимая, что при написании статей на тему Космос вы всё чаще и чаще будете сталкиваться с разными сокращениями и аббревиатурами, обозначающими типы галактик, пришел к выводу, что необходимо параллельно и независимо написать отдельную статью на эту тему, чтобы при любом возникшем вопросе или непонимании о типах галактик вы просто обращались к этой небольшой статье.

Типов галактик совсем немного. Основных 4, с некоторыми дополнениями 6. Давайте разбираться.

Типы галактик

Смотря на схему выше, пойдем по порядку, разберёмся что означает буква и рядом стоящая цифра (или ещё одна дополнительная буква). Всё станет на свои места.

1. Эллиптические галактики (E)

Галактика типа E (M 49)

Эллиптические галактики имеют форму овала. У них отсутствует центральное яркое ядро.

Цифра, которая добавляется после английской буквы E делит данный тип на 7 подтипов: E0 — E6. (некоторые источники сообщают, что может быть 8 подтипов, некоторые 9, не важно). Она определяется по простой формуле: E = (a — b) / a, где a — большая ось, b — меньшая ось эллипсоида. Таким образом не сложно понять, что E0 — эти идеально круглая, E6 — овальная или сплюснутая.

Эллиптические галактики составляют меньше 15% от общего числа всех галактик.  В них отсутствует звёздообразование, состоят преимущественно из красных гигантов, желтых и белых карликов.

При наблюдении в телескоп большого интереса не представляют, т.к. рассмотреть подробно детали не получится.

2. Спиральные галактики (S)

Галактика типа S (M 33)

Самый популярный вид галактик. Больше половины из всех существующих галактик — спиральные. Наша галактика Млечный Путь также является спиральной.

Из-за своих «ветвей» они являются самыми красивыми и интересными для наблюдения. Большая часть звёзд расположена в непосредственной близости от центра. Дальше, вследствие вращения, звёзды рассеиваются, образуя спиральные ответвления.

Спиральные галактики разделяются на 4 (иногда 5) подтипа (S0, Sa, Sb и Sc). В S0 спиральные ветви вовсе не выражены, имеют светлое ядро. Они очень похоже на эллиптические галактики. Их ещё часто выносят в отдельный тип — линзовидный.

Таких галактик не больше 10% от общего числа. Дальше идут Sa (часто просто пишут S), Sb, Sc (иногда ещё добавляют Sd) в зависимости от степени закрученности ветвей. Чем старше дополнительная буква, тем меньше степень закрученности и «ветви» галактики окружают ядро всё реже.

«Ветви» или «рукава» спиральных галактик имеют много молодых гигантских звёзд. Здесь идут процессы активного звёздообразования.

3. Спиральные галактики с баром (SB)

Галактика типа SBb (M 66)

Спиральные галактики с баром (или ещё называют «с перемычкой») относятся к типу спиральных галактик, но содержат так называемую «перемычку», которая проходит через центр  галактики — его ядро.

Спиральные ветви (рукава) расходятся от концов этих перемычек. В обычных спиральных галактиках ветки расходятся от самого ядра. В зависимости от степени закрученности ветвей, обозначаются как SBa, SBb, SBc.

Чем длиннее рукав, тем старше дополнительная буква.

4. Неправильные галактики (Irr)

Галактика типа Irr (NGC 6822)

Неправильные галактики не обладают какой-то ярко выраженной формой. Имеют «рваную» структуру, ядро не различимо.

Данный тип имеют не больше 5% от общего числа галактик.

Однако, даже неправильные галактики имеют два подтипа: Im и IO (или Irr I, Irr II). Im имеют хоть какой-то намек на структуру, некоторую симметричность или видимые границы. IO полностью хаотичны.

5. Галактики с полярными кольцами

Галактика с полярным кольцом (NGC 660)

Данный вид галактик стоит особняком от других. Их особенностью является то, что имеют два звёздных диска, которые вращаются под разными углами друг относительно друга. Многие считают, что такое возможно из-за слияния двух галактик. Но точного определения того, как образовались такие галактики учёные до сих пор не имеют.

Большинство галактик с полярным кольцом являются линзовидными галактиками или S0. Хоть их и редко можно обнаружить, но зрелище запоминающееся.

6. Пекулярные галактики

Пекулярная галактика «Головастик» (PGC 57129)

Исходя из определения с сайта Википедия:

Пекулярная галактика— это галактика, которую невозможно отнести к определенному классу, поскольку она обладает ярко выраженными индивидуальными особенностями. Для этого термина не существует однозначного определения, отнесение галактик к этому типу может оспариваться.

Они уникальные в своём роде. Найти их на небе очень не просто и требуются профессиональные телескопы, но увиденное выглядит потрясающе.

Вот и всё. Надеюсь ничего сложного. Теперь вы знаете основные типы (классы) галактик. И при знакомстве с астрономией или чтении статей у меня в блоге у вас не будут возникать вопросы с их определением. А если, вдруг, подзабудете — сразу обращайтесь к этой статье.

Источник: https://2i.by/galaktiki/

Ядро звезды

ЯДРА ГАЛАТИК И ЗВЕЗДЫ – СРАВНИТЕЛЬНАЯ ХАРАТЕРИСТИКА

Ядро звезды — источник ее энергии

Многие представляют звезды как большие горящие газовые шары. Но на самом деле «горит» только ядро звезды. Оно многим отличается от внешних слоев звезды — как и физикой своей природы, так и составом.

Как образуется ядро?

Астрономы часто говорят, что любая звезда — это маленькая модель Вселенной. И недаром: процессы внутри и снаружи светил являются настоящим кладезем самых разнообразных физических процессов, которые существовали с первого дня возникновения нашего мира и двигали его вперед. Да и первыми объектами, возникшими после рождения Вселенной, были звезды-титаны галактических размеров.

Первые звезды во Вселенной в представлении художника

С тех пор вещество во Вселенной распределилось куда равномернее. Сейчас большинство звезд — включая и наше Солнце — образуются из космических туманностей, оставшихся после сверхновых старых звезд. Однако гравитационный принцип, собирающий материю вместе, остался неизменным.

Астероид, планета или звезда — на всех них действует принцип дифференциации (разделения) недр. Это одно из главных последствий гравитационных законов в космосе. В результате дифференциации, легкие элементы выталкиваются наружу, когда самые тяжелые движутся в центр тела. Образование из тяжелых веществ внутри космического тела и называется ядром.

Для запуска такого процесса нужно сперва набрать значительную массу — иначе силы гравитации просто не смогут начать разделение веществ. Имеет дифференциация недр и свои последствия.

  • Во-первых, тело разогревается (и чем массивней новообразованное ядро тем сильнее нагрев).
  • Во-вторых, объект принимает сферическую форму — в том числе шарообразным становится и ядро.

Плотность ядра во много раз выше консистенции окружающих его слоев — связано это не только с физическими свойствами составляющих ядро элементов, но и с гравитационным сжатием. Оно неминуемо для всех тел во Вселенной, чья масса несоразмерна с их объемом.

Образования звезды и ее ядра проходит практически также — с поправкой на звездный состав. Как известно, все звезды в среднем состоят их 75% водорода, 23% гелия и еще 2% тяжелых веществ.

Идентичное содержание имеют все известные сегодня звезды, за очень редкими исключениями. Наиболее массивный в этой смеси гелий — он в четыре раза тяжелее водорода. Именно из гелия и формируется ядро звезды.

В нем также содержатся тяжелые элементы, которые были захвачены из «материнской» туманности, или же образуются во время термоядерных реакций.

Строение разных звезд

Чем особенно ядро звезды?

«Постойте-ка! — скажете вы. — Раз все ядра образуются одинаково, почему тогда светятся и излучают сильный жар только звезды?» Действительно, ядро звезды — это нечто из ряда вон выходящее.

Суть в том, что когда происходит формирование светила, гелий накапливается в очень больших количествах.

Масса гелиевого зародыша ядра становится настолько большой, что силы гравитации начинают не просто сжимать и разогревать ядро — а накалять его до сверхвысоких температур.

Этот накал куда сильнее, чем нужно для обычной дифференциации гелия и водорода. Когда температура достигает около миллиона градусов Цельсия, водород в ядре вспыхивает — начинается термоядерная реакция по его преобразованию в гелий. Момент зажигания звезды считается начальной точкой ее существования.

Характеристики ядра

Гигантская масса и свободно протекающая ядерная реакция делают звездное ядро действительно уникальным объектом во Вселенной. Для наглядности примера возьмем наше Солнце — это рядовая звезда Главной последовательности. Рассказав о ней, мы расскажем о 90% обозримых звезд. А факты про ядро Солнца говорят сами за себя:

Солнце в разрезе

  • Плотность ядра Солнца в самом центре — около 150г/см3. Это в 150 раз больше плотности воды, и в семь раз плотнее золота! Консистенция ядра другой звезды может быть как и в десятки раз плотнее, так и намного меньше. Предельной плотностью обладают нейтронные звезды, почти полностью состоящие из ядра — их усредненная плотность составляет 2,8·1014 г/см³
  • Ядро Солнца вращается, причем независимо от его верхних слоев — когда оболочка Солнца проворачивается вокруг оси за 24 дня, ядро вертится в несколько раз быстрее. Чем ядро тяжелее, тем быстрее гравитация заставляет его крутиться — железные ядра красных гигантов крутятся в десятки раз быстрее их раздувшейся оболочки.
  • Благодаря высокой плотности ядро светила очень массивное. К примеру, ядро Солнца в обхвате «всего» 350 тысяч километров, что равно 1/5 части диаметра звезды. При этом в нем содержится больше трети массы Солнца!
  • Чем моложе ядро звезды, тем шире его обхват и тем меньше его плотность. Она растет в меру протекания ядерных реакций в ядре и накопления гелия и других тяжелых продуктов термоядерного синтеза.

Именно протекание ядерного синтеза в звезде отличает ее от других дифференцированных объектов Вселенной. Более того — атомная реакция в ядре является главным звездным критерием. Коричневые карлики, причисляемые к звездам, технически ими не являются в первую очередь из-за ядра — преобразования водорода в гелий в нем почти отсутствует. Поэтому коричневые карлики светят тускло и быстро гаснут.

Что излучает ядро?

Ядерный синтез — очень мощный источник энергии. Температура в центре ядра Солнца достигает около 15 миллионов градусов Цельсия — но это не самое жаркое звездное ядро. Нагрев в центре голубых гигантов, самых горячих во Вселенной звезд, достигает и 100 миллионов градусов — именно настолько раскалено ядро звезды Джета в созвездии Кормы.

Кроме того, именно атомный синтез в ядре является основным источником света и тепла звезды — внешние слои только передают энергию, но не создают ее. Излучение также удерживает звезду от гравитационного коллапса — сила частиц света, направленная в космос, преодолевает силу сжатия гравитации.

Внимательный читатель скажет: «Постойте! Ведь именно из-за гравитационного сжатия в ядре звезды такая высокая температура!» И будет прав — действительно, именно благодаря сжатию ядро столь горячо. Накал в миллионы градусов создает условия для термоядерной реакции. И только эта энергия может выйти за пределы ядра звезды.

Но для того чтобы пробиться сквозь силы притяжения и толщу звездного вещества, свет тратит десятки тысяч, а то и миллионы лет! У нашего Солнца этот срок колеблется около 200 тысяч лет. А гравитационная энергия, несмотря на всю свою силу, содержится только внутри звезды — и покинуть ее может только в виде сверхновой.

Модель противостояния давления частиц и гравитации

  • Примечание — существуют еще гравитационные волны, вместе с которыми гравитационная энергия покидает ядро звезды. Но их сила несоизмеримо мала.

Откуда ученые узнали о термоядерных процессах внутри звезд сегодня, когда даже из ядра Солнца излучение пробивается тысячами лет? О происходящих внутри звезд реакциях нам рассказали нейтрино — микрочастицы, выделяющиеся при каждом объединении атомных ядер. Масса нейтрино настолько мала, что на них не действует гравитация и не останавливает столкновения с атомами солнечного вещества. Поэтому они беспрепятственно долетают до Земли, где их «ловят» с помощью специальных приборов.

Детектор нейтрино

Интересно, что непосредственно из ядра звезды исходит гамма-излучение, которое невидимо для человеческого глаза. Рентгеновские лучи, ультрафиолет и обычный видимый свет получаются после прохождения лучей из ядра через поверхностные слои звезды.

Атомы различных веществ действуют подобно цветному стеклу. Когда в атом попадает луч «высшего» порядка — например, рентгеновский — он выпускает несколько «низших» лучей уже ультрафиолетового спектра.

Более того, в спектре света остаются линии, несущие информацию о тех атомах в звезде, сквозь которые свет проходил.

Именно спектральный анализ позволил астрономам узнать о составе нашего Солнца и остальных звезд. Таким же образом было изучено множество удаленных объектов вроде планет и астероидов, материал которых сложно доставить на Землю.

by HyperComments

Источник: https://SpaceGid.com/yadro-zvezdyi.html

Галактики

ЯДРА ГАЛАТИК И ЗВЕЗДЫ – СРАВНИТЕЛЬНАЯ ХАРАТЕРИСТИКА

Объекты глубокого космоса >Галактики

Изучите галактики Вселенной: описание Млечного Пути с фото, спиральные, эллиптические и неправильные, список, Хаббл и расширение Вселенной, активные галактики.

Галактики – растянутые космические системы, состоящие из пыли, газа и множества звезд. Точное количество подсчитать невозможно, потому что лишь в наблюдаемой вселенной их 100 миллиардов.

Некоторые из галактик очень сильно напоминают Млечный Путь, но бывают и совершенно непохожие экземпляры.

Если в галактике меньше миллиарда звезд, то такой галактический тип называют «маленькой». Во Млечной Пути Солнце – лишь одна из миллиарда звезд.

Ученые до конца не разобрались в процессах формирования и эволюции галактик, так как начальные этапы происходили очень рано. Возраст древнейших практически достигает вселенского – 10-13 миллиардов лет. Смотрите видео про галактики, чтобы узнать больше интересной и полезной информации о классификации и возрасте.

Эволюция галактик

Астрофизик Анатолий Засов о различии близких и далеких галактик, трансформации и пределе их возраста:

Мы проживаем в галактике спирального типа с перемычкой, простирающейся на 100000 лет в диаметре. Ядро в форме диска выпирает на 30000 световых лет и вмещает огромное количество старых звезд и черную дыру. Из четырех спиральных рукавов, наша система расположена в рукаве Ориона. Отдалена от центра на 30000 световых лет.Солнечная система совершает обороты вокруг галактического центра Млечного Пути на скорости в 250 км/с и тратит на один проход 220 миллионов лет.

Всего существует три главных типа галактик: спиральная, эллиптическая и неправильная. К первым относятся, например, Млечный Путь и Андромеда.

В центре расположены объекты и черная дыра, вокруг которых вращается ореол звезд и темная материя. Из ядра ответвляются рукава. Спиральная форма образуется из-за того, что галактика не прекращает вращения.

Многие представители обладают лишь одним рукавом, но у некоторых их можно насчитать три и больше.

Таблица характеристик основных видов галактик

Эллиптическая галактикаСпиральная галактикаНеправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
Процент от общего числа галактик 20% 55% 5%

Спиральные бывают с перемычкой и без. В первом типе центр пересекается плотным баром звезд. А у вторых подобного формирования не наблюдается.

В эллиптических галактиках проживают самые древние звезды и нет достаточного количества пыли и газа, чтобы создать молодые. Могут напоминать по форме круг, овал или же спиральный тип, но без рукавов.

Примерно четверть галактик представляют группу неправильных. Они меньше, чем спиральные и отображают порой причудливые формы. Их можно объяснить появлением новых звезд или же гравитационным контактом с соседней галактикой. Среди неправильных числятся Магеллановы Облака.

Есть также много галактических подтипов: сейфертовские (спирали с быстрым движением), яркие эллиптические супергиганты (поглощают других), кольцевые (без ядра) и прочие.

Спиральные галактики

Спиральная (как Млечный Путь) – галактика с плоским диском, выпуклым центром и спиральными рукавами. В диске сосредоточены звезды, планеты, пыль и газ, которые вращаются вокруг центра. Скорость может достигать 100 км/с, из-за чего вещество на диске формируется в виде спирали. Некоторые из них могут создавать особенные формы, благодаря чему получают оригинальные названия (как Галактика Сомбреро).Ближе к центру выпуклости сосредотачиваются старшие звезды, а новые формируются в спиральных системах. Их диски окружены ореолами с загадочной темной материей.Узнать больше о спиральных галактиках вы можете благодаря нашей статье.

Галактики с перемычкой

Спиральные галактики с крупными яркими звездными полосами и материалом, рассекающим центральные секции, называются «Галактики с перемычкой». У большинства таких галактик есть перемычки – бары. Астрономы заинтересованы в их изучении, так как все еще не могут понять, какую функцию они выполняют в галактиках. Бары могут вмещать сверхмассивные черные дыры. Они делятся на подгруппы по выпуклостям, спиральным рукавам и их плотности.Кроме того, у нас есть отдельная статья, посвященная спиральным галактикам с перемычкой.

Эллиптические галактики

Эллиптическая – галактика в форме эллипса. Как правило, они круглые, но немного вытянутые вдоль одной оси. Могут быть удлиненными и напоминать форму сигары. Такой тип вмещает множество старых звезд (1 триллион), но испытывает недостаток в пыли и прочих межзвездных веществах. Звезды сосредоточены вокруг центра, но двигаются в случайном направлении. Формируют мало новых объектов.Наиболее известные – гигантские эллиптические галактики, способные простираться на 2 миллиона световых лет. Но этот тип может быть и маленьким – карликовые эллиптические галактики.Узнать больше об эллиптических галактиках вы можете в нашей статье.

Неправильные галактики

Неправильная – галактика, которая не попадает в первые два вида. Кажутся деформированными или не имеют конкретной формы, потому что контактируют с другими объектами.Читайте больше о неправильных галактиках в нашей статье.

Наиболее известные неправильные галактики

Галактика Колесо телеги

Галактика Центавр А

Галактики Антенны

Неправильные галактики  каталога Мессье

Список менее известных галактик:

Скопления галактик

Галактики могут существовать в одиночестве или же в паре. Но в большинстве случаев они входят в состав крупных ассоциаций, которые называют группами, скоплениями и сверхскоплениями. Такие объекты взаимодействуют и сливаются в единые галактики. Из-за этого газы оттекают к галактическому центру, что приводит к активации рождения звезд.

Полагают, что Млечный Путь однажды сольется с галактикой Андромеды, расположенной в 2 миллионах световых лет и наблюдаемой из северной части земного полушария. Все это – этапы эволюции, когда неправильные переходят в одну из форм, а спиральные становятся эллиптическими.

Происхождение галактик

Ученые считают, что галактики появились сразу после Большого Взрыва, который создал Вселенную 10-20 миллиардов лет назад. Уже в первые миллисекунды газовые облака начали объединяться, разрушаться и сжиматься из-за силы тяжести, формируя строительные блоки.

Но если в этом моменте мнения сходятся, то разногласия появляются в том, как это произошло и с чего началось. Некоторые думают, что начальным этапом стало слияние скоплений с миллионами звезд.

Другие же полагают, что с самого начала были галактики, а уже потом звезды внутри объединялись в скопления.

Нижнее видео про галактики расскажет, как происходит процесс слияния и поглощения галактических структур.

Галактический «каннибализм»

Астроном Алексей Расторгуев об испарении звезд, измерении массы Млечного Пути и слиянии галактик:

Химическая эволюция галактик

Астроном Дмитрий Вибе о нуклеосинтезе, тяжелых химических элементах и самых старых звездах

Активные галактики

Это тип галактики, излучающий больше энергии, чем обычная. Млечный Путь считается стабильным. По сравнению с ним, активные выделяют в 100 раз больше энергии. Это происходит из-за взрывов в ядре. Энергия высвобождается в виде радиоволн. Есть несколько разновидностей таких галактик.

Типичный вид Сейфертовской галактики – спиральная галактика NGC 1566

Сейфертовские галактики напоминают спиральные с чрезвычайно активным ядром. Больше всего интереса вызывают квазары, потому что за 1 секунду способны выплеснуть столько энергии, сколько Солнце производит за все свое существование.

Они напоминают звезды и считаются наиболее энергичными объектами. Многие полагают, что квазары выступают активными ядрами далеких галактик на ранних эволюционных стадиях.

Свет движется к нам миллиарды лет и может поступать даже с самого начала Вселенной.

Как же узнали о нашей галактике? Древние люди наблюдали в небе светлую полосу и назвали ее Млечным Путем. В конце 1500-х гг. Галилео Галилей впервые посмотрел на звезды в телескоп и понял, что эта полоса представлена множеством отдельных объектов. В 1755 году Иммануил Кант предположил, что наша галактика – линзовидная звездная группа и во Вселенной еще много таких.

Проходили годы и ученые знакомились с галактикой ближе, но все еще ставили Солнце в ее центре. В 1918 году все изменилось, когда Харлоу Шепли понял, что мы находимся на периферии галактики.

Хаббл, галактики и расширяющаяся Вселенная

Стоит выразить огромную благодарность Эдвину Хабблу, который в 1924 году доказал, что наша галактика – одна из многих.

При помощи своего 100-дюймового телескопа он заметил, что группа звезд, которые ранее считались частью Млечного Пути, на самом деле, являются галактикой Андромеды, расположенной в 2.

2 миллионах световых лет. В 1927 году Ян Оорт доказал, что галактики совершают вращение вокруг своего центра.

Хаббл также выявил, что отдаленные галактики уходят от нас на больших скоростях. Это наблюдение стало законом Хаббла – Вселенная расширяется.

В 1996 году телескоп Хаббла добыл снимки 1500 далеких галактик, пребывающих в процессе формирования, что увеличило предположительное количество галактик. В 1990-х гг.

полагали, что их может быть только 50 миллиардов. Конечно, современные цифры намного больше.

На нашем сайте у вас есть возможность изучить все разновидности галактик и рассмотреть качественные фото, схемы и рисунки космических структур Вселенной.

Внегалактическая астрономия

Астрофизик Анатолий Засов о «звездном острове», Магеллановых Облаках и методах изучения галактик:

Движение звезд в Галактике

Астроном Алексей Расторгуев о скорости движения звезд, их сложных орбитах и их роли в исследовании галактик


Субмиллиметровые галактики

Астрофизик Ольга Сильченко о проблеме отождествления субмиллиметровых источников, спутнике IRAS и красном смещении:

Сверхскопления и скопления галактик

Строение галактики

Типы галактик

(4 5,00 из 5)

Источник: https://v-kosmose.com/galaktiki-vselennoi/

Основные характеристики звезд

ЯДРА ГАЛАТИК И ЗВЕЗДЫ – СРАВНИТЕЛЬНАЯ ХАРАТЕРИСТИКА

    Звезда – это горячий газовый шар, разогреваемый за счет ядерной энергии и удерживаемый силами тяготения. Основную информацию о звездах дает испускаемый ими свет и электромагнитное излучение в других областях спектра.

Главными факторами, определяющими свойства звезды, являются её масса, химический состав и возраст. Звезды должны меняться со временем, так как они излучают энергию в окружающее пространство.

Информация о звездной эволюции может быть получена из диаграммы Герцшпрунга-Рассела, представляющей собой зависимость светимости звезды от температуры её поверхности (рис.9).

Pис. 9. Диаграмма Герцшпрунга-Рассела. Линия показывает начальные положения звезд с различными массами на главной последовательности

    На диаграмме Герцшпрунга-Рассела звезды распределены неравномерно. Около 90% звезд сконцентрировано в узкой полосе, пересекающей диаграмму по диагонали. Эту полосу называют главной последовательностью. Её верхний конец расположен в области ярких голубых звезд.

Различие в заселенности звезд, находящихся на главной последовательности и областей, примыкающих к главной последовательности, составляет несколько порядков величины. Причина в том, что на главной последовательности находятся звезды на стадии горения водорода, которая составляет основную часть времени жизни звезды. Солнце находится на главной последовательности.

Его положение указано на рис. 9.     Следующие по населенности области после главной последовательности – белые карлики, красные гиганты и красные сверх-гиганты. Красные гиганты и сверхгиганты – это в основном звезды на стадии горения гелия и более тяжелых ядер.     Светимость звезды – полная энергия, испускаемая звездой в единицу времени.

Светимость звезды может быть вычислена по энергии, достигающей Земли, если известно расстояние до звезды.

    Из термодинамики известно, что, измеряя длину волны в максимуме излучения черного тела, можно определить его температуру. Черное тело с температурой 3 K будет иметь максимум спектрального распределения на частоте 3·1011 Гц.

Черное тело с температурой 6000 K будет излучать зеленый свет. Температуре 106 K соответствует излучение в рентгеновском диапазоне. В таблице 2 приведены интервалы длин волн, соответствующие различным цветам, наблюдаемым в оптическом диапазоне.

Таблица 2

Цвет и длина волны

Цвет

Диапазон длин волн,

Фиолетовый, синий

3900 – 4550

Голубой

4550 – 4920

Зеленый

4920 – 5570

Желтый

5570 – 5970

Оранжевый

5970 – 6220

Красный

6220 – 7700

    Температура поверхности звезды рассчитывается по спектральному распределению излучения.     Классификацию спектрального класса звезд легко понять из таблицы 3.     Каждая буква характеризует звезды определенного класса. Звезды класса O самые горячие, класса N – самые холодные.

В звезде класса O видны в основном спектральные линии ионизованного гелия. Солнце принадлежит к классу G, для которого характерны линии ионизованного кальция.

    В таблице 4 приведены основные характеристики Солнца.

Пределы изменения таких характеристик звезд как масса (M), светимость (L), радиус (R) и температура поверхности (T) даны в таблице 5.

Таблица 3

Спектральные классы звезд

Обозначение класса
звезд

Характерный признак
спектральных линий

Температура
поверхности, K

O

Ионизованный гелий

> 30 000

B

Нейтральный гелий

11 000 – 30 000

A

Водород

7 200 – 11 000

F

Ионизованный кальций

6 000 – 7 200

G

Ионизованный кальций,
нейтральные металлы

5 200 – 6 000

K

Нейтральные металлы

3 500 – 5200

M

Нейтральные металлы, полосы поглощения

молекул

< 3 500

R

Полосы поглощения
циана (CN)2

< 3 500

N

Углерод

< 3 500

Рис. 10. Соотношение масса-светимость

    Для звезд главной последовательности с известной массой зависимость масса-светимость показана на рис.10 и имеет вид
L ~ Mn, где n = 1.6 для звезд малой массы (M M). Это означает, что перемещение вдоль главной последовательности от звезд меньшей массы к звездам большей массы приводит к увеличению светимости.

Таблица 4

Основные характеристики Солнца

Масса M

2·1033 г

Радиус R

7·1010 см

Светимость L

3.83·1033 эрг/с (2.4·1039 МэВ/с)

Поток излучения с единицы
 поверхности

6.3·107 Вт/м2

Средняя плотность вещества

1.4 г/см3

Плотность в центре

~100 г/см3

Температура поверхности

6·103 K

Температура в центре

1.5·107 K

Химический состав: водород гелий

углерод, азот, кислород, неон и др.

74% 23%

3%

Возраст

5·109 лет

Ускорение свободного падения
на поверхности

2.7·104 см/с2

Шварцшильдовский радиус – 2GM /c2
(c – скорость света)

2.95 км

Период вращения относительно
неподвижных звезд

25.4 суток

Расстояние до центра Галактики

2.6·1017 км

Скорость вращения вокруг центра
Галактики

220 км/с

Таблица 5

10-1 M < M < 50 M

10-4 L < L < 106 L

10-2 R < R < 103 R

2·103 K < T < 105 K

За единицу измерения M, R, L приняты соответствующие характеристики Солнца, T- температура поверхности.

    Таким образом, более массивные звезды оказываются и более яркими.     В левой нижней части диаграммы (рис.9) – вторая по численности группа – белые карлики. В правом верхнем углу диаграммы группируются звезды с высокой светимостью, но низкой температурой поверхности – красные гиганты и сверхгиганты.

Этот тип звезд встречается реже. Названия “гиганты” и “карлики” связаны с размерами звезд. Белые карлики не подчиняются зависимости масса-светимость, характерной для звезд главной последовательности. При одной и той же массе они имеют значительно меньшую светимость, чем звезды главной последовательности.

    Звезда может находиться на главной последовательности на определенном этапе эволюции и быть гигантом или белым карликом на другом. Большинство звезд находится на главной последовательности потому, что это наиболее длительная по времени фаза эволюции звезды.

    Одним из существенных моментов в понимании эволюции Вселенной является представление о распределении образующихся звезд по массам. Изучая наблюдаемое распределение звезд по массам и учитывая время жизни звезд различной массы, можно получить распределение звезд по массам в момент рождения.

Установлено, что вероятность рождения звезды данной массы, очень приближенно, обратно пропорциональна квадрату массы (функция Солпитера):

F(M) ~ M-7/3.

Однако это лишь общая закономерность. В некоторых областях наблюдается дефицит массивных звезд. В областях, где много молодых звезд, звезд малой массы меньше. Считается, что первые звезды были в основном яркими, массивными и короткоживущими.

    По-видимому, функция масс должна обрываться на нижнем конце около масс ~ (0.1 – 0.025) M . Используя в качестве нижней оценки два значения масс M ~ 0.1 M и 0.

025 M , можно получить относительную массу звезд, имеющих массы больше 5M :

Масса (M > 5 M )/Полная масса

0.2 (0.1M );
0.1 (0.025 M ).

и долю массы звезд, имеющих массу меньше солнечной, –

Масса (M < M )/Полная масса

0.60 (0.1M );
0.75 (0.025 M ).

    Для того, чтобы объяснить наблюдаемые распространенности различных элементов, необходимо предположить, что в звездах происходят ядерные реакции, в которых и образуются эти элементы. Особенности протекания ядерных реакций рассмотрены ниже.

Источник: http://nuclphys.sinp.msu.ru/nuclsynt/n03.htm

ovdmitjb

Add comment