Kievuz

Понятие о формах и размерах земли Знание фигуры и размеров Земли требуется не только для геодезии и картографии, но и для многих отраслей знаний: космонавтики, авиации, мореплавания, астрономии, геологии, геофизики и др

Содержание

Понятие о формах и размерах земли Знание фигуры и размеров Земли требуется не только для геодезии и картографии, но и для многих отраслей знаний: космонавтики, авиации, мореплавания, астрономии, геологии, геофизики и др

Понятие о формах и размерах земли Знание фигуры и размеров Земли требуется не только для геодезии и картографии, но и для многих отраслей знаний: космонавтики, авиации, мореплавания, астрономии, геологии, геофизики и др

Поверхность Земли общей площадью 510 млн кв. км разделяется на Мировой океан – 71 % и сушу – 29 %.

Так как поверхность Мирового океана составляет 3/4 всей поверхности Земли, можно принять ее за фигуру Земли, а формы суши и дна океана изучать относительно поверхности Мирового океана.

Поверхность, совпадающая со средним уровнем воды Мирового океана в спокойном состоянии, получила название основной уровенной поверхности.

Направления отвесных линий пересекают уровенную поверхность во всех ее точках под прямым углом, поэтому она всюду горизонтальна. Эта поверхность является также непрерывной, замкнутой, всюду выпуклой.

Фигура Земли, образованная уровенной поверхностью, совпадающей с поверхностью Мирового океана в состоянии полного покоя и равновесия и продолженная под материками, получила название геоида.

Таким образом, фигура геоида определяется направлением отвесных линий, положение которых зависит от распределения масс внутри Земли.

Вследствие неизвестного и неравномерного распределения масс внутри Земли поверхность геоида является весьма сложной и математически неопределенной.

Наиболее близкой к геоиду математической поверхностью является эллипсоид вращения.

Эллипсоид вращения (рис. 1) – поверхность, получающаяся от вращения эллипса вокруг малой оси, называемой полярной осью. Размеры эллипсоида определяются длинами его полуосей (а – большая полуось; b – малая полуось) и сжатием.

Различают общий земной эллипсоид, который наиболее близок к фигуре Земли в целом, и “рабочие” эллипсоиды, называемые референц-эллипсоидами. Референц-эллипсоид это земной эллипсоид, наиболее близкий не для всей поверхности геоида, а только для части поверхности геоида, принятый для обработки геодезических измерений и установления системы геодезических координат.

Идея определения размеров Земли может быть представлена следующим образом: приближенно поверхность эллипсоида можно принять за поверхность шара. А поверхность шара определяется величиной радиуса шара. Первое определение размеров Земли как шара было выполнено Эратосфеном в III в. до н. э.

Многие ученые занимались определением размеров Земли. Приведем наиболее известные результаты (табл. 1).

Длина меридианного эллипса, вычисленная Деламбром, принята равной 40 000 000 м. Одна сорокамиллионная этого эллипса принята за единицу длины – метр.

Размеры эллипсоида Бесселя до 1942 г. использовались в СССР. Однако установлено, что большая полуось по Бесселю ошибочна (преуменьшена) на величину 850 м.

Практически задача определения размеров Земли сводится к определению координат точек на ее поверхности в единой, общей для всей Земли, системе координат.

Астрономо-геодезические измерения, осуществленные в большом объеме в нашей стране, а также в США и Западной Европе, позволили выдающемуся ученому-геодезисту Ф. Н. Красовскому при участии проф. А. А. Изотова вывести в 1940 г. новые более точные размеры эллипсоида.

В 1946 г. постановлением правительства эти размеры были приняты в СССР, а эллипсоиду присвоено имя Красовского. Эллипсоид Красовского определенным образом ориентирован в теле Земли. Поверхность эллипсоида Красовского наиболее близко подходит к поверхности геоида в пределах территории нашей страны. Уклонения не превышают 40 м.

Из наблюдений искусственных спутников Земли (ИСЗ) получено весьма точное значение сжатия – 1:298,26, подтверждающее результат Красовского.

Приближенно поверхность референц-эллипсоида Красовского можно принять за поверхность шара с радиусом 6 371 116 м. Одному градусу соответствует дуга шара в линейной мере равная 111 140 м, 1′ – 1852 м, 1″ – 31 м.

При изображении на бумаге (на плоскости) пространственных форм пользуются методом проекций (рис. 3). Точки поверхности Земли проецируют ортогонально на уровенную поверхность отвесными линиями, так как отвесные линии нормальны, т. е. перпендикулярны к уровенной поверхности (см. рис. 3, а)

Незначительные участки земной поверхности, например точки местности А, В, С, D проецируют ортогонально отвесными линиями Аа, ВЪ, Сс, Dd на горизонтальную плоскость Я.

В геодезии эта проекция называется горизонтальной, точки а, Ь, с, d, в которых отвесные линии пересекают горизонтальную плоскость, называются горизонтальными проекциями точек местности А, В, С, D. Наряду с горизонтальной проекцией в геодезии широко используется центральная.

Центральной — называется проекция, которая строится при помощи проектирующих лучей SA, SB, SC, выходящих из одной точки или пересекающихся в одной точке (см. рис. 3, б). Эта точка S называется центром проецирования. Центральная проекция называется также перспективным изображением.

Плоскость, на которой строится перспективное изображение, называется картинной плоскостью Р.

Центральная проекция лежит в основе фотографии. Аэрофотоснимки, космические фотоснимки, наземные фотоснимки представляют собой изображение местности или каких-либо объектов в центральной проекции.

Указанные фотоснимки широко используют при создании топографических карт.

Поэтому изображение, построенное на них в центральной проекции, преобразуют в горизонтальную проекцию, в которой создают топографические планы.

Приборы непосредственного измерения расстояния их устройство компарирование.

Различают непосредственное измерение расстояний и измерение расстояний с помощью специальных приборов, называемых дальномерами. Непосредственное измерение выполняют инварными проволоками, мерными лентами и рулетками.

Инварные проволоки позволяют измерять расстояние с наибольшей точностью; относительная ошибка измерения может достигать одной миллионной; это означает, что расстояние в 1 км измерено с ошибкой всего 1 мм. Инвар – это сплав, содержащий 64% железа и 36% никеля; он отличается малым коэффициентом линейного расширения α = 0.5 * 10-6 (для сравнения: сталь имеет α = 12 * 10-6).

Мерные ленты обеспечивают точность измерений около 1 / 2 000, т.е. для расстояния в 1 км ошибка может достигать 50 см. Мерная лента – это стальная лента шириной от 10 до 20 мм и толщиной 0.4 – 0.

5 мм (рис.4.22). Мерные ленты имеют длину 20, 24 и 50 м.

Целые метры отмечены пластинами с выбитыми на них номерами метров, полуметры отмечены круглыми заклепками, дециметры – круглыми отверстиями диаметром 2 мм.

Фактическая длина ленты или проволоки обычно отличается от ее номинальной длины на величину Δl. Фактическую длину ленты определяют, сравнивая ее с эталонной мерой. Процесс сравнения длины мерного прибора с эталоном называется компарированием, а установка, на которой производится компарирование, – компаратором.

Согласно ГОСТ 7502 – 80 допускается отклонение фактической длины новой ленты 2 мм для 20- и 30-метровых лент и 3 мм для 50-метровых. Вследствие износа фактическая длина ленты изменяется, поэтому компарирование производится каждый раз перед началом полевых работ.

Длина стальных рулеток бывает 20, 30, 50, 75 и 100 м. Точность измерения расстояния стальными рулетками зависит от методики измерений и колеблется от 1/2 000 до 1/10 000.

Измерение линий мерной лентой. Измеряют линии, последовательно укладывая мерную ленту в створе линии.

Прежде чем измерять линию, ее нужно подготовить, а именно: закрепить на местности ее концевые точки и обозначить створ. Створом линии называют отвесную плоскость, проходящую через концевые точки.

Для обозначения створа линию провешивают, т.е. устанавливают вехи через 50-150 м в зависимости от рельефа.

Измерение линии выполняют два человека. Они укладывают ленту в створ и считают число уложений. В комплект кроме самой ленты входят 6 или 11 шпилек и 2 проволочных кольца (рис.4.1), на которые надевают шпильки. Передний мерщик в процессе измерения линии втыкает шпильки в землю, а задний собирает их. В конце линии измеряют остаток с точностью до 1 см

Длину линии определяют по формулам:

D’= k * ( l0 + Δl) + r + (Δl/l0) * r,                  (4.27)

D = D’+ D’* a * (t – tk) = D’ * [1 + a * (t – tk)];

здесь l0- номинальная длина ленты;  Δl – поправка из компарирования;  k – число уложений ленты;  r – остаток;  tk – температура компарирования; 

t – температура ленты во время работы.

Длину линии обычно измеряют два раза – в прямом и обратном направлениях. Допускается расхождение между результатами двух измерений на величину:

где 1/T – относительная ошибка измерения расстояния.

Например, при 1/T = 1/2000 и длине линии 500 м расхождение между прямым и обратным измерениями не должно превышать 0.5 м.

Приведение длины линии к горизонту. Измеренная линия имеет угол наклона ν ; проекция ее на горизонтальную плоскость, называемая горизонтальным проложением линии, вычисляется по формуле:

S = D – ΔD,

где ΔD- поправка за приведение к горизонту. Формула для вычисления поправки ΔD выводится следующим образом. Из ΔABB’ (рис.4.23) видно, что:

S = D * Cos ν;

далее пишем:

ΔD = D – D * Cos ν = D * (1 – Cosν),

ΔD = 2 * D * Sin2 ν/2.                  (4.29)

Угол наклона линии измеряют либо теодолитом, либо специальным прибором – эклиметром. В исправном эклиметре нулевой диаметр всегда занимает горизонтальное положение. При наклоне эклиметра в прорезь виден отсчет, равный углу наклона линии. Ошибка измерения угла наклона эклиметром равна 15′- 30′.

Если линия имеет переменный угол наклона, то ее нужно разделить на части, каждая из которых имеет постоянный угол наклона, и измерить каждую часть отдельно.

Если ν

Источник: http://kursak.net/ponyatie-o-formax-i-razmerax-zemli-znanie-figury-i-razmerov-zemli-trebuetsya-ne-tolko-dlya-geodezii-i-kartografii-no-i-dlya-mnogix-otraslej-znanij-kosmonavtiki-aviacii-moreplavaniya-astronomii-g/

Геодезия – что это, предмет её изучения, задачи и структура

Понятие о формах и размерах земли Знание фигуры и размеров Земли требуется не только для геодезии и картографии, но и для многих отраслей знаний: космонавтики, авиации, мореплавания, астрономии, геологии, геофизики и др

Геодезия – это наука о земле, о способах её измерений. Геодезия как практическая отрасль деятельности человека сформировалась и находила применение еще с древних времен. Приходившие со временем умения и навыки переходили в опыт и устойчивые знания. Но эти знания складывались не системно, были не структурированы и, если можно так сказать, до теоретическими.

Начиная с Древней Греции, на основе общего начального знания возникает абстрактное и теоретическое мышления, которые предопределяют появление первых научных дисциплин. Среди них одной из первых считается наука геометрия, возникшая на базе знаний об измерении земли.

Ее, естественно, можно назвать прародительницей будущей науки геодезия, которая за многие годы видоизменяла свое определение.

Возникновение математической науки позволило методами наблюдений и математических абстракций выдвигать новые понятия, выводить из них аксиомы, на основе которых путем логического мышления обосновывались другие новые положения и понятия. Таким образом, начинался зарождаться будущий математический аппарат для обеспечения всех вычислительных процессов в геодезии.

Дословно геодезия имеет свое происхождение из Древней Греции и состоит из двух частей. Первая часть «geo» означает «земля», вторая – «dаеzio» имеет такое значение, как «разделять». В результате получаем дословный перевод «землеразделение».

Интересные факты и этапы развития геодезии

Первым человеком, предположившим шарообразную форму нашей планеты, был древнегреческий математик и философ Пифагор (570 – 490 годы до нашей эры).

Его идея о вращении Земли вокруг оси в течение суточного периода, а за год вокруг Солнца, получила научное подтверждение польским астрономом Николаем Коперником (1473-1543).

Его учение о гелиоцентрической системе стала своего рода началом первой научной революции.

Выдающимся событием следует считать деятельность персидского астронома, математика, геодезиста и философа Аль-Бируни (973-1048годы). В области геодезии он производил расчеты по определению радиуса Земли.

Удивительные результаты вычислений Аль-Бируни получил при определении длины дуги меридиана угловой величиной в один градус на 32 параллели северной широты значением в 110,278км.

При современных измерениях были получены линейные значения дуги в 110,895км.

Эти яркие события по определению формы и размеров Земли, измерениям на ее поверхности характерны по своему предмету исследований учеными в первый период развития геодезии.

Началом второго этапа в эволюционировании геодезической науки считаются времена морских путешествий и географических открытий: четырех экспедиций в Америку Христофора Колумба (1492-1504), трех мореплаваний в Индию Васко да Гама (1497-1524), кругосветки Фернана Магеллана (1519-1522).

В это период происходят важнейшие изобретения в геодезии:

  • зрительной трубы итальянца Галилея (1609 год);
  • метода триангуляции нидерландца Снелиусса (1614 год);
  • первое применение сетки нитей в приборах французом Пикаром;
  • выход в свет научного труда англичанина Ньютона, в котором теоретически обосновывается полюсное сжатие и определяется его величина.

Третий период характерен разрешением многих геодезических задач:

  • нахождением размеров эллипсоида Земли;
  • определением геоида;
  • математической обработки измерений различными методами наименьших квадратов;
  • возникновением новых геодезических приборов, новых направлений наук геофизики, гравиметрии.
  • определения фигуры физической поверхности Земного шара.

В современный период значительным продвижением в геодезической отрасли являются использование спутниковых технологий, появление глобальных навигационных систем позиционирования, новых физических методов измерений, геоинформационных и компьютерных систем.

Что изучает геодезия

Современная геодезия представляет собой многогранную отрасль, которые складываются в результате научных и учебно-методических отношений, производственных и технологических процессов между частными лицами и юридическими субъектами, государственными учреждениями и различными организациями, занимающимися вопросами, связанными с деятельностью по изучению, использованию земной поверхности Земли в различных направлениях и обязательному геодезическому контролю.

Предметом изучения геодезической науки служит:

  • формы Земли, с периодическими определениями их размеров;
  • физическая поверхность Земли с выполнением на ней измерений;
  • геодинамических процессов, происходящих в земной поверхности;
  • определение действия сил тяжести Земли в разных ее точках;
  • установление точек и систем отсчета, координат для всей территории государства и планеты, требующихся для единого пространственного положения с целью решения системных планетарных задач разностороннего характера;
  • математические методы построения геодезических сетей для формирования единства систем координат на земной поверхности;
  • физические и математические способы геодезических измерений;
  • математических методов обработки полевых измерений и теоретических уравнительных их вычислений.

Основные задачи геодезии

Невозможно представить себе ни одного хозяйствующего субъекта, ни одну область экономики без присутствия и участия в них практической геодезии. По правде сказать, многие из них не подозревают или не знают о такой связи. Главное, что геодезическая отрасль востребована и решает многие практические задачи:

  • создания пунктов геодезических сетей разного уровня тем самым формирую государственную систему координат,
  • исполнения топографических съемок для изыскательских и картографических работ;
  • составления карт и топографических планов;
  • обеспечения геодезических процессов при строительстве объектов материального производства;
  • определения геодезическими способами деформаций грунта, просадок, сдвига фундаментов и крена конструкций сооружений;
  • геодезическо-маркшейдерское обслуживание подземных и открытых горных работ в шахтах и рудниках, карьерах и полигонах;
  • исследования и разведки природных ресурсов и полезных ископаемых;
  • при ведении землеустроительных работ и кадастрового учета;
  • обеспечение космической, воздушной, наземной и морской навигаций всевозможных летательных аппаратов, кораблей и автомобильной техники.

Структура геодезии

С эволюцией человеческой деятельности в разных областях, научно-технического и технологического прогресса геодезическая наука развивалась. В ней сформировались новые направления. В ее состав входят многие научные и практические области, которые решают свои задачи. К таким относятся:

Связи геодезии с науками

В настоящее время настолько широки, что можно все и не перечислить. Несомненно, первой наукой, из которой можно сказать, и произошла геодезия это геометрия. Далее перечислим все остальные общие дисциплины, с которыми геодезия находится в контактах:

  • математика (арифметика, геометрия);
  • астрономия;
  • география;
  • физика (механика, оптика);
  • геофизика;
  • геология;
  • фотография;
  • топографическое черчение;
  • информатика;
  • геоинформационные системы;
  • картография;
  • компьютерные системы.

Правовые отношения в геодезии

В геодезии функционируют на основе многих правовых актов федеральных законов, кодексов, концепций, постановлений, государственных и отраслевых стандартов, приказов, инструкций, положений, норм и правил.

Основополагающим из всех считается Конституция, а именно статья 71 подпункт  р), где собственно сказано, что геодезия и картография находится в правовом ведении государства.

Вторыми по степени важности, после главного закона страны, считаются федеральные законы. В них поднимаются такие понятия и вопросы:

  • отношений объектов и субъектов;
  • виды геодезической деятельности;
  • функции государства в отрасли;
  • единства измерений;
  • технического регулирования;
  • географических наименований;
  • земельных отношений;
  • кадастрового учета недвижимости и земли.

Производственные отношения в геодезии регулируются техническими и нормативными документами, регулирующими различную геодезическую деятельность. Среди них следует выделить целый список:

  • ГоСты (государственные стандарты);
  • СНиПы (строительные нормы и правила);
  • ОСТы (отраслевые стандарты);
  • ВСН (ведомственные строительные нормы);
  • ГКИНП (геодезические картографические инструкции нормы и правила);
  • технические инструкции;
  • инструкции по видам геодезических работ;
  • методики измерений;
  • руководства по выполнению;
  • положения;
  • приказы;
  • инструкции по геодезическому надзору.

Как правило, во всей нормативно-технической документации устанавливаются определенные технические и организационные требования, правила и нормы их исполнения.

Все такие документы должны быть утверждены и приняты к исполнению соответствующими структурами и субъектами.

Предназначаются для служб и предприятий ведущих геодезическую, маркшейдерскую, землеустроительную, строительную, картографическую и иную деятельность, требования которых распространяется для их выполнения.

Источник: https://geostart.ru/post/311

Геодезия – что это за наука? Геодезия и картография

Понятие о формах и размерах земли Знание фигуры и размеров Земли требуется не только для геодезии и картографии, но и для многих отраслей знаний: космонавтики, авиации, мореплавания, астрономии, геологии, геофизики и др

На свете существует много наук. Одна из них – геодезия. Что это за наука? Что она изучает? Где можно ей научиться? Ответы на эти и другие вопросы вы найдете в этой статье.

Геодезия – что это?

Как и астрономия, геодезия – это одна из древнейших наук. Однако если об астрономии знает каждый школьник, то о такой науке, как геодезия, большинство людей никогда не слышали. А в то же время без использования геодезических знаний развитие современного общества немыслимо.

Геодезия – что это? Что собой представляет эта наука? Если сказать кратко, то это наука об изучении и измерении поверхности Земли.

Геодезия – это наука о том, как производить измерения на поверхности земли, которые проводятся с целью изучения форм и размеров Земли, а также для изображения всей планеты и ее частей на планах и картах. Кроме того, геодезия занимается методами специальных измерений, которые необходимы для решения экономических и инженерных задач.

Отрасли геодезии

Геодезия – что это? Это наука, которая динамично развивается. Так, в процессе развития науки и техники она разделилась на ряд дисциплин.

Высшая геодезия изучает размеры и форму Земли, а также методы, с помощью которых можно с высокой точностью определить координаты точек поверхности планеты и изобразить их на плоскости.

Изучением размеров и форм земной поверхности с целью изображения ее на картах, профилях и планах занимается раздел геодезии – топография.

Геодезия и картография изучают процессы и методы создания и использования разнообразных карт.

Фотограмметрия занимается решением задач измерения по космическим и аэрофотоснимкам для разнообразных целей, например для обмеров сооружений и зданий, для получения планов и карт и прочее.

Прикладная, или инженерная, геодезия изучает целый комплекс геодезических работ, которые выполняются при строительстве, изысканиях и эксплуатации разнообразных сооружений и зданий.

Геометрическое соотношение между точками поверхности земли с помощью искусственных спутников Земли изучает космическая геодезия.

Сейчас, в связи с тем, что появились новые достижения в области техники измерений и наблюдений, к числу исследований на Земле прибавились еще и проблемы решения научных задач по изучению размеров и формы Луны, а также остальных планет Солнечной системы и их полей гравитации.

Морская геодезия и картография занимаются решением как научных, так и прикладных геодезических задач на море. Главной задачей было и остается определение поверхности Земли и ее гравитационного поля в морях и океанах.

Морская геодезия решает следующий ряд задач: строительство гидротехнических сооружений, эксплуатация и разведка подводных ресурсов и прочее.

Однако важнейшей задачей подобного обеспечения является картографирование, которое сопровождается фотографированием, и геодезическая привязка.

Развитие геодезии как науки

Геодезия, как и многие другие науки, возникла в глубокой древности. Прогресс в точных и естественных науках, изобретение телескопа, маятника и прочих инструментов – все это способствовало ее развитию.

Однако стоит отметить, что за последние полвека эта наука добилась больших успехов, чем за все время своего существования. Это связано, например, с тем, что инженерная геодезия теперь может получить данные с искусственных спутников, а также с тем, что появилось множество электронных измерительных приборов и электронно-вычислительных машин.

Современный компьютер позволяет провести анализ огромного объема информационных данных, применить новые математические разработки, которые дали новый импульс развитию теоретический геодезии, проходящему параллельно с прогрессом теории информации и математики.

Прикладная геодезия: аспекты

Геодезические данные используются в различных областях, например в навигации, картографии и землепользовании. Что они позволяют узнать? Например, определить местоположение буровых платформ на шельфе, зону затопления после сооружения плотины, точное положение административных и государственных границ разного рода и прочее.

Стратегические системы наведения и навигация в равной степени зависят от того, насколько точна информация о положении цели и адекватности физических моделей, которые описывают гравитационное поле Земли. Измерения, полученные геодезистами, используются при изучении тектоники плит и сейсмологии.

При поиске многих полезных ископаемых (в том числе и нефти) применяется гравиметрическая съемка.

Где получить профессию геодезиста?

Сегодня в России существует большое количество учебных заведений, которые позволят получить профессию геодезиста. В области этой науки на разных уровнях освоения этой достаточно сложной специальности может работать специалист, который окончил как среднее учебное заведение – техникум или колледж геодезии, – так и высшее – академию, институт или университет.

Образование в этой сфере можно выбрать на свой вкус. Будущий специалист может окончить специализированный университет или институт геодезии. Например, МИИГАиК – это один из самых старейших и престижных специализированных вузов в России. Или же можно получить среднее образование: пойти учиться в Санкт-Петербургский или Новосибирский техникум геодезии и картографии.

После окончания средне-специального учебного заведения по специальности «геодезист» выпускник может рассчитывать на должность помощника геодезиста или техника-геодезиста. Кроме того, при желании он может продолжить совершенствовать свои знания в этой области, поступив в высшее учебное заведение.

Окончание вуза дает выпускнику право на самостоятельную работу, а окончание аспирантуры позволяет дальше продвигаться в карьере в научном и практическом направлении.

Чем занимается геодезист?

Среди многообразия видов деятельности можно выделить следующие направления:

  • Геодезист может заниматься наблюдением и измерением изменения земной поверхности как на локальном, так и на глобальном уровне.
  • Выполнять различные измерения ландшафта.
  • Составлять топографические планы и карты.
  • Создавать водные, лесные, земельные и прочие виды кадастров.
  • Заниматься определением и обозначением государственных границ.
  • Готовить отчеты о проведенных исследованиях.

Что сдавать, чтобы поступить на геодезиста?

Школьнику, который собирается в будущем посвятить себя геодезии, необходимо максимально хорошо знать некоторые общеобразовательные предметы, например математику, географию, русский язык, историю, обществознание, а также информатику и информационно-коммуникационные технологии. Как правило, именно эти дисциплины сдают на вступительных экзаменах в средних и высших учебных заведениях по геодезическим специальностям.

При поступлении на специальность, связанную с геодезией, обычно сдают какие-то три из шести вышеперечисленных предметов, однако какие именно предметы это будут – зависит от учебного заведения, факультета и вида специальности.

Принимать экзамены могут по результатам ГИА или ЕГЭ или же провести тестирование для абитуриентов по всем предметам, кроме истории и обществознания – они принимаются устно.

Некоторые колледжи и техникумы вообще не требуют сдачи вступительных экзаменов. Примером служит Новосибирский техникум геодезии и картографии, или НТГиК. В этом учебном заведении готовят специалистов по следующим специальностям: прикладная геодезия (геодезист-техник), картография (техник-картограф) и аэрофотогеодезия (аэрофотогеодезист-техник).

Востребованность профессии на рынке труда

Специалисты в области геодезии и картографии нередко требуются в разнообразных видах производства.

Поэтому в вузовской и среднеспециальной подготовке этих специалистов наблюдается наличие разных уклонов, которые в дальнейшем определят практическую направленность работы геодезиста.

Кроме того, на это накладывают отпечаток еще и традиции, которые исторически сложились в стенах учебного заведения.

Неудивительно, что существующие вузы готовят студентов по-разному. В любом учебном заведении есть своя специфика подбора уже имеющихся направлений по специальности. Однако любой вуз, техникум или колледж даст фундаментальную подготовку, которая в дальнейшем даст возможность изменить направление работы, переквалифицироваться и перейти на смежную специализацию.

Таким образом, можно сделать вывод, что геодезия сегодня является одной из интереснейших и развивающихся наук. Каждый специалист сможет найти себя в ней.

Источник: https://FB.ru/article/296606/geodeziya---chto-eto-za-nauka-geodeziya-i-kartografiya

Гранит и камень

Понятие о формах и размерах земли Знание фигуры и размеров Земли требуется не только для геодезии и картографии, но и для многих отраслей знаний: космонавтики, авиации, мореплавания, астрономии, геологии, геофизики и др
 

Знание фигуры и размеров Земли необходимо во многих областях и прежде всего для определения положения объектов на земной поверхности и правильного её изображения в виде карт, планов и цифровых моделей местности.

Земная поверхность представляет собой ряд неровностей: горы, лощины, овраги, равнины, долины, плато и прочие очертания суши чередуются с водным пространством океанов, морей, рек, озер и других водоемов.

Площадь поверхности океанов и морей во много раз больше площади суши. Из 510 млн. кв. км всей поверхности нашей планеты 361 млн. кв. км (71 %) занимают водоемы, и лишь 149 млн. кв. км (29 %) – суша.

Подводная поверхность включает в себя систему срединно-океанических хребтов, подводные вулканы, океанические желоба, подводные каньоны, океанические плато и абиссальные равнины.

Надводная часть земной поверхности также характеризуется многообразием форм – горы, овраги, возвышенности, низменности и т. д.

С течением времени поверхность Земли из-за тектонических процессов и эрозии постоянно изменяется.

Если представить карту земной поверхности в целом, то отдельные неровности – горы, овраги, лощины и т. д. в сравнении с рельефом всей земной поверхности будут настолько незначительными, что общий вид Земли представится в виде формы, близкой к форме шара, радиус которого – около 6370 км.

Последние исследования формы земной поверхности показали, что она уклоняется от правильной геометрической формы сфероида и в реальности имеет форму неправильной объемной фигуры, отдаленно напоминающей грушу, и получившей название “геоид“, от греческого “гео” – Земля.
Термин “геоид” для обозначения реальной формы Земли предложил в 1873 году немецкий физик Иоганн Листинг.

Теоретически поверхность геоида совпадает с поверхностью морей и океанов в их спокойном состоянии, и мысленно продолжается под (или над) сушей. Эта поверхность принимается за математическую поверхность Земли, или, как ее называют в обиходе, “уровень моря”, от которого отсчитывают высоты точек суши (так называемые ортометрические высоты).

Реальная форма геоида весьма сложна и зависит от распределения масс и плотностей в теле Земли. Точно установить положение поверхности геоида на суше очень сложно, поскольку измерения силы тяжести выполняются на физической поверхности Земли, а затем довольно сложными приемами редуцируются на математическую поверхность (геоид) с некоторой долей погрешности.

Для упрощения расчетов поверхности геоида и получения более точных результатов моделирования, математики применяли и применяют различные приемы (поверхность квазигеоида Молоденского, модель геоида EGM96, использующая сферические функции – гармоники и т. д.). Все эти математические приемы достаточно сложны.

В последние годы заметный прогресс в получении реальной модели земной поверхности позволило получить развитие спутниковой системы измерений.

В настоящее время наиболее широкое использование получил геоцентрический эллипсоид WGS84 (World Goodetic System 1984). Он служит основой для измерения местоположений во всем мире. Система спутниковой навигации GPS сообщает координаты в системе эллипсоида WGS84 (World Goodetic System 1984).

Общеземной эллипсоид ориентируется в теле Земли согласно следующим условиям (определяемыми международными геодезическими организациями, которые организуются и направляются Международной ассоциацией геодезии, действующей по инициативе и в рамках Международного геодезического и геофизического союза):

  • Малая полуось должна совпадать с осью вращения Земли.
  • Центр эллипсоида должен совпадать с центром масс Земли.
  • Сумма квадратов отступлений геоида от общеземного эллипсоида должна быть по всей Земле наименьшей из всех возможных.

Тем не менее, некоторые погрешности и отступления от реальной поверхности имеются при любых, применяемых в настоящее время, расчетах и измерениях.
Для геодезических работ рекомендуется использовать средний эллипсоид GRS80 (Geodetic Reference System 1980), принятый Генеральной Ассамблеей Международной ассоциацией геодезии в 1979 г.

Фигура геоида связана с направлением силы тяжести и, следовательно, существенно зависит от неравномерного распределения масс в земной коре. Поэтому поверхность геоида имеет неправильную, в геометрическом отношении весьма сложную фигуру с неравномерно изменяющейся кривизной.

Однако исследованиями установлено, что поверхность геоида в общем близка к поверхности эллипсоида вращения с небольшим сжатием по направлению малой (полярной) оси. Иногда такой эллипсоид называют сфероидом.

В геодезии для обозначения формы земной поверхности часто используют термин “фигура Земли”.

* * *



Математическая поверхность Земли

Рассмотрим любое тело в виде материальной точки А на физической поверхности Земли (рис. 1).

На точку А оказывают влияние две силы: сила притяжения Fп, направленная к центру Земли, и центробежная сила вращения Земли вокруг своей оси , направленная от оси вращения по перпендикуляру.
Равнодействующая этих сил называется силой тяжести .

В любой точке земной поверхности направление силы тяжести, называемое ещё вертикальной или отвесной линией, можно легко и просто определить с помощью уровня или отвеса. Оно играет очень большую роль в геодезии. По направлению силы тяжести ориентируется одна из осей пространственной системы координат.

Если через точку А построить замкнутую поверхность, которая в каждой своей точке будет перпендикулярна отвесной линии (направлению силы тяжести), то данную поверхность можно принять в качестве математической при решении некоторых частных задач в геодезии.

Такая поверхность получила название уровенной или горизонтальной. Её недостаток в том, что она содержит элемент неопределенности, т. е. через любую точку можно провести свою уровенную поверхность, и таких поверхностей будет бесчисленное множество. Для устранения этой неопределенности при решении общих геодезических задач принимается так называемая общая математическая поверхность, т. е. уровенная поверхность, которая в каждой своей точке совпадает со средним уровнем морей и океанов в момент полного равновесия всей массы воды под влиянием силы тяжести. Такая поверхность носит название общей фигуры Земли или поверхности геоида.

Геоид – выпуклая замкнутая поверхность, совпадающая с поверхностью воды в морях и океанах в спокойном состоянии и перпендикулярная к направлению силы тяжести в любой её точке (см. рис.1).

Из-за неравномерного распределения масс внутри Земли геоид не имеет правильной геометрической формы, и в математическом отношении его поверхность характеризуется слишком большой сложностью. Поэтому там, где это допустимо, поверхность геоида заменяется приближенными математическими моделями, в качестве которых принимается в одних случаях земной сфероид, в других – земной шар, а при топографическом изучении незначительных по размеру территорий – горизонтальная плоскость, т. е. плоскость, перпендикулярная к вертикальной линии в данной точке.

Земной сфероид – эллипсоид вращения, который получается вращением эллипса вокруг его малой оси b (см. рис.1), совпадающей с осью вращения Земли, причем центр эллипсоида совмещается с центром Земли.

Размеры эллипсоида подбирают при условии наилучшего совпадения поверхности эллипсоида и геоида в целом (общеземной эллипсоид) или отдельных его частей (референц-эллипсоид). Фигура референц-эллипсоида наилучшим образом подходит для территории отдельной страны или нескольких стран.

Как правило, референц-эллипсоиды принимают для обработки геодезических измерений законодательно.

Размеры земного эллипсоида в разное время определялись многими учеными по материалам градусных измерений.

В США, Канаде, Мексике, Франции при создании карт пользуются размерами эллипсоида Кларка, в Финляндии и некоторых других странах – размерами эллипсоида Хейфорда, в Австрии – размерами эллипсоида Бесселя .

Наиболее удачная математическая модель Земли в виде референц-эллипсоида была предложена проф. Ф. Н. Красовским с большой полуосью a = 6378245 м, малой – b = 6356863 м и коэффициентом сжатия у полюсов α = (a-b)/a = 1/298.3 ~ 1/300.

Постановлением Совета Министров СССР № 760 от 7 апреля 1946 года эллипсоид Красовского принят для территории нашей страны в качестве математической поверхности Земли.

В инженерной геодезии для практических расчетов за математическую поверхность Земли принимают шар со средним радиусом R = 6371.11 км. Объем шара равен объему земного эллипсоида.

Если на поверхности такого эллипсоида выделить фигуру в виде треугольника со сторонами примерно 25 км каждая, то окажется, что все линии в пределах поверхности этого треугольника, проложенные по поверхности эллипсоида, будут различаться по длине всего на 20 мм от длины прямых линий, соединяющих одноименные точки. Такая разница для многих вычислений и измерений является настолько незначительной, что ей можно пренебречь и считать данные линии спроектированными не на сферическую поверхность, а на плоскость. Этим приемом пользуются при составлении планов и крупномасштабных карт. Таким образом, участок сферической поверхности Земли в пределах треугольника со сторонами в 25 км (площадью до 320 кв. км) можно принять за плоскость.

При геодезических измерениях, не требующих повышенной точности, за плоскость условно принимается и окружность на поверхности Земли радиусом до 10 км.

* * *

Физическая поверхность Земли

При топографическом изучении физической поверхности Земли надводная и подводная части рассматриваются отдельно. Надводная часть (суша) – местность (территория) является предметом изучения топографии.

Подводную часть – акваторию (поверхность, покрытую водами морей и океанов) изучает океанография. В свою очередь местность разделяют на ситуацию и рельеф.

Ситуацией называют совокупность постоянных предметов местности: рек, озер, растительного покрова, дорожной сети, населенных мест, сооружений и т. п. Границы между отдельными объектами ситуации называются контурами местности.
Рельефом (от лат.

“relevo” – поднимаю) называют совокупность неровностей суши, дна океанов и морей, разнообразных по очертаниям, размерам, происхождению, возрасту и истории развития.
О рельефе местности можете почитать отдельные статьи сайта.

Рельеф как совокупность неровностей физической поверхности Земли рассматривается по отношению к её уровенной поверхности.

Рельеф слагается из положительных (выпуклых) и отрицательных (вогнутых) форм и образуется главным образом в результате длительного одновременного воздействия на земную поверхность эндогенных (внутренних) и экзогенных (внешних) процессов.

Рельеф изучает раздел геодезии – геоморфология.

* * *

Уровненная поверхность и горизонтальное проложение



Источник: http://granit2006.ru/geodezia/forma/

ovdmitjb

Add comment