Kievuz

Понятие о процессе электролитической диссоциации

Содержание

Теория электролитической диссоциации

Понятие о процессе электролитической диссоциации

Хорошо известно, что одни вещества в растворенном или расплавленном состоянии проводят электрический ток, другие в тех же условиях ток не проводят.

Проводимость веществами электрического тока или отсутствие проводимости можно наблюдать с помощью простого прибора.

Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара ,то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия.

Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.

К электролитам относятся кислоты, основания и почти все соли.

К неэлектролитам относятся большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи .

Электролиты – проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо.

Различают сильные и слабые электролиты

Сильные электролиты при растворении вводе полностью диссоциируют на ионы.

К ним относятся:

1) почти все соли;

2) многие минеральные кислоты, например Н2SO4, HNO3, НСl, HBr, HI, НМnО4, НСlО3, НСlО4;

3) основания щелочных и щелочноземельных металлов.

Слабые электролиты при растворении в воде лишь частично диссоциируют на ионы.

К ним относятся:

1) почти все органические кислоты;

2) некоторые минеральные кислоты, например H2СО3, Н2S, НNO2, HClO, H2SiO3;

3) многие основания металлов (кроме оснований щелочных и щелочноземельных металлов), а также NH4OH, который можно изображать как гидрат аммиака NH 3∙H 2O.

К слабым электролитам относится вода.

Слабые электролиты не могут дать большой концентрации ионов в растворе.

Основные положения теории электролитической диссоциации

Распад электролитов на ионы при растворении их в воде называется элекролитической диссоциацией.

Так, хлорид натрия NaСl при растворении в воде полностью распадается на ионы натрия Na+ и хлорид-ионы Cl -.

Вода образует ионы водорода Н+ и гидроксид-ионы ОН- лишь в очень незначительных количествах.

Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации . В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.

Современное содержание этой теории можно свести к следующим трем положениям :

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома – это простые ионы ( Na +, Mg2+, Аl3+ и т.д.) – или из нескольких атомов – это сложные ионы (NО3-, SO2-4 , РОЗ-4 и т.д.).

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Поэтому первые называются катионами , вторые – анионами .

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

3. Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы ( диссоциация ) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К+ и анион А- в общем виде записывается так:

КА ↔ K + + A –

Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Степень диссоциации

Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.

Степенью диссоциации (а) называется отношение числа молекул, распавшихся на ионы (n'), к общему числу растворенных молекул (n):

Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.

Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается. Как правило, увеличивает степень диссоциации и повышение температуры. По степени диссоциации электролиты делят на сильные и слабые.

Рассмотрим смещение равновесия, устанавливающегося между недиссоциированными молекулами и ионами при электролитической диссоциации слабого электролита – уксусной кислоты:

СН3СООН ↔ СН3СОO-+ Н+

При разбавлении раствора уксусной кислоты водой равновесие сместится в сторону образования ионов, – степень диссоциации кислоты возрастает. Наоборот, при упаривании раствора равновесие смещается в сторону образования молекул кислоты – степень диссоциации уменьшается.

Из этого выражения очевидно, что α может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.

Механизм диссоциации

Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов.

Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е.

ионы, химически связанные с молекулами воды.

Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы).

Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами – к отрицательному полюсу.

В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы:

Диссоциация полярных молекул может быть полной или частичной.

Таким образом , электролитами являются соединения с ионной или полярной связью – соли , кислоты и основания . И диссоциировать на ионы они могут в полярных растворителях.

Константа диссоциации

Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.

Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:

A K → A- + K+.

Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как:

где К – константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.

Диапазон констант равновесия для разных реакций очень большой – от 10-16 до 1015. Например, высокое значение К для реакции

означает, что если в раствор, содержащий ионы серебра Ag+,внести металлическую медь, то в момент достижения равновесия концентрация ионов меди [Cu2+] намного больше, чем квадрат концентрации ионов серебра [Ag+]2. Напротив, низкое значение Кв реакции

говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.

Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К1).

Так, для реакции меди с серебром неправильным будет выражение:

Правильной будет следующая форма записи:

Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.

Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI

Произведение растворимости. Константы диссоциации малорастворимых солей и гидроксидов металлов называются произведением растворимости соответствующих веществ (обозначается ПР).

Для реакции диссоциации воды

выражение константы будет:

, а не

Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация [Н2О] остается постоянной и вводится в константу равновесия.

Кислоты, основания и соли с позиций электролитической диссоциации.

С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода.

Например:

НCl ↔ Н++ С l – ;

СН3СООН ↔ Н+ + СН3СОО-

Диссоциация многоосновной кислоты протекает главным образом по первой ступени , в меньшей степени по второй и лишь в незначительной степени – по третьей . Поэтому в водном растворе , например , фосфорной кислоты наряду с молекулами Н3РО4 имеются ионы (в последовательно уменьшающихся количествах) Н2РО2-4, НРО2-4 и РО3-4

Н3РО4 ↔ Н+ + Н2РО-4 (первая ступень)

Н2РО-4 ↔ Н+ + НРO2-4 (вторая ступень)

НРО2-4 ↔ Н+ PОЗ-4 (третья ступень)

Основностъ кислоты определяется числом катионов водорода, которые образуются при диссоциации.

Так , НCl, HNO3 – одноосновные кислоты – образуется один катион водорода;

Н2S, Н2СО3, Н2SO4 – двухосновные,

Н3 РО4, Н3 АsО4 – трехосновные , так как образуются соответственно два и три катиона водорода.

Из четырех атомов водорода, содержащихся в молекуле уксусной кислоты СН3СООН , только один , входящий в карбоксильную группу – СООН, способен отщепляться в виде катиона Н+, – уксусная кислота одноосновная.

Двух – и многоосновные кислоты диссоциируют ступенчато (постепенно).

Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы.

Например:

KOH ↔ K+ + OH-;

NH4OH ↔ NH+4 + OH-

Основания,растворимые в воде называются щелочами . Их немного . Это основания щелочных и щелочноземельных металлов : LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН)2, Sr(ОН)2, Ва(ОН)2, Rа(ОН)2, а также NН4ОН . Большинство оснований в воде малорастворимо.

Кислотность основания определяется числом его гидроксильных групп ( гидроксогрупп ). Например, NН4ОН – однокислотное основание , Са(ОН)2- двухкислотное , Fе(ОН)3 – трехкислотное и т . д . Двух- и многокислотные основания диссоциируют ступенчато

Ca(ОН)2 ↔ Са(ОН)+ + OH- (первая ступень)

Ca(OH)+ ↔ Ca2++ OH- (вторая ступень)

Однако имеются электролиты , которые при диссоциации одновременно образуют катионы водорода, и гидроксид – ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, диссоциирует на ионы Н+ и ОН- (в незначительных количествах):

Н2O ↔ Н+ + ОН-

Следовательно, у нее в равной мере выражены и кислотные свойства, обусловленные наличием катионов водорода Н+, и щелочные свойства, обусловленные наличием ионов ОН-.

Диссоциацию амфотерного гидроксида цинка Zn(ОН)2 можно выразить уравнением

2ОН- + Zn2+ + 2Н 2О ↔ Zn(ОН)2 + 2Н2О ↔ [Zn(ОН)4]2-+ 2Н+

Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH4) и анионы кислотных остатков

Например:

(NH4)2SO4 ↔ 2NH+4 + SO2-4;

Na3PO4 ↔ 3Na+ + PO3-4

Так диссоциируют средние соли . Кислые же и основные соли диссоциируют ступенчато. У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода. Например:

KHSO4 ↔ K++ HSO-4

И далее:

HSO -4 ↔ H+ + SO 2-4

У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы .

Mg(OH)Cl ↔ Mg(OH)++ Cl-

И далее:

Mg(OH)+ ↔ Mg2++ OH-

Источник: http://examchemistry.com/content/lesson/himreakcii/eldissociaciya.html

Электролитическая диссоциация (Химия 11 класс) — Гипермаркет знаний

Понятие о процессе электролитической диссоциации

Гипермаркет знаний>>Химия>>Химия 11 класс>> Химия: Электролитическая диссоциация

Исторические факты об электролитической диссоциации

В первой половине XIX в. М. Фарвдей ввел понятие об электролитах и неэлектролитах. Электролитами он назвал вещества, водные растворы которых проводят электрический ток) а неэлектролитами — веществе, водные растворы которых не проводят электрический ток.

Для объяснения свойств водных растворов электролитов шведский ученый С. Арреииус (1859—1927) в 1887 г. предложил теорию электролитической диссоциации.

Согласно этой теории, при растворении в воде электролиты распадаются на свободные ионы. Этот процесс назвали электролитической диссоциацией. Растворы веществ тогда становятся проводниками электрического тока, когда они содержат ионы (положительно или отрицательно заряженные частицы), которые в электрическом поле приходят в направленное движение.

Но эта теория не ответила на некоторые вопросы: почему одни вещества являются электролитами, а другие нет? Какую роль в образовании ионов играет растворитель?

Представления о диссоциации электролитов получили развитие в работах русских химиков И. А. Каблукова и В. А. Кистаковского. Они применили к объяснению процесса электролитической диссоциации химическую теорию растворов Д. И. Менделеева.

Как известно, он экспериментально доказал, что при растворении электролитов происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. .

Эти ионы связаны с молекулами воды, то есть являются гид рати ронянными. Гидратированные ионы в растворе находятся в постоянном хаотическом движении.

Бели же в этот раствор поместить противоположно заряженные электроды, то положительные ионы начнут двигаться к катоду — их назвали катионами, а отрицательные будут двигаться к аноду — и потому их назвали анионами.

Проникнуть в сущность процесса электролитической диссоциации помогло установление природы химической связи.

Вы, очевидно, помните синие кристаллы медного купороса, эту окраску ему придают гидратированные ноны меди.
По свойствам ионы отличаются от атомов. Так, атомы натрии образуют простое вещество — металл натрий. Он активно взаимодействуете водой, вытесняя водород, а гидратированные ионы натрия этой способностью не обладают.

Атомы хлора объединяются в двухатомные молекулы Сl2. Простое вещество хлор Сl2 имеет желто-зеленую окраску, удушливый запах, а гидратированные ионы хлора бесцветны и не имеют запаха. Молекулы водорода, состоящие из двух атомов Н…

образуют бесцветный горючий газ, который плохо растворяется в воде, а ноны водорода не горят и существуют в водных растворах в виде иона оксония CuS04, окрашивающего лакмус в красный цвет.

Электролитами могут быть только вещества с ионной и ковал ент ной полярной связями. Вы знаете такие вещества — это соли, основания, кислоты. Вспомните определения классов этих веществ с точки зрения теории электролитической диссоциации.

Степень электролитической диссоциации. Сильные и слабые электролиты

С. Аррениус для количественной характеристики электролитической диссоциации ввел понятие степени электроли-тической диссоциации, обозначаемой греческой буквой a.

Степень электролитической диссоциации — это отношение числа молекул электролита, распавшихся на ионы, к общему числу растворенных молекул .

a= Число молекул, распавшихся на ион/ Общее число растворенных молекул.

Если а = 0, то вещество совсем не распадается на ионы, оно является неэлектролитом. К неэлектролитам относятся вещества с ковал битным и малополярными и менолярныыи связями, такие, как эфиры, углеводороды, кислород, азот и др.

Степень электролитической диссоциации может иметь значение от 0 до 1(в процентах от 0 до 100%).

Сильные электролиты — это такие электролиты, которые в водных растворах (даже концентрированных) практически полиостью диссоциируют на ноны. У таких электролитов степень диссоциации стремится к 1 (100%). К сильным электролитам относятся почти все соли, неорганические кислоты, щелочи.

Слабые электролиты — это такие электролиты, которые в водных растворах не полностью диссоциируют на ионы. Их степень диссоциации значительно меньше 1 (100%), в большинстве случаев она стремится к нулю.

Но при разбавлении, как вы помните, степень диссоциации увеличивается.

К слабым электролитам относятся: многие неорганические кислоты , органические кислоты, основания (за исключением щелочей), гидрат аммиака, некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамическое равновесие между педиссоцииро ванны ми молекулами и ионами.

Можно применить к этому равновесию закон действующих масс и записать выражение константы равновесия.

Константу равновесия, характеризующую процесс диссоциации слабого электролита, называют константой диссоциации. Константа диссоциации характеризует способность электролита (кислоты, основания, воды) диссоциировать на ионы.

Чем больше константа диссоциации, тем легче электролит распадется на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Фториводородная кислота более сильный электролит, чем уксусная.

Многоосновние кислоты, а также миогокпелотные основания диссоциируют ступенчато.

Диссоциация воды. Водородный показатель. Среды водных растворов электролитов

Вода, как было отмечено ранее, слабый электролит. Без учета гидратации ионов Н2 уравнение диссоциации воды имеет вид:

Произведение концентрации ионов водорода и гидроксид-ионов называют ионным произведением воды.

В разбавленных водных растворах электролитов, как и в воде, произведение концентраций ионов водорода Н2 и гидроксид-ионов ОН — величина постоянная при определенной температуре. Ионное произведение воды дает возможность вычислить концентрацию гидроксид-ионов ОН” в любом водном растворе, если известна концентрация ионов водорода Н и наоборот.

Различают три типа сред: нейтральную, щелочную, кислотную.

Нейтральная — это среда, в которой концентрация ионов водорода равна концентрации гидроксид-ионов:
[Н+] = [ОН-] =10-7 моль/л

Кислотная — это среда, в которой концентрация ионов водорода больше концентрации гндроксид-ионов:
[Н+] > [ОН-], [Н+] > 10-7 моль/л

Щелочная — это среда, в которой концентрация ионов водорода меньше концентрации гидроксид-ионов:
[Н+] < [0Н-], [Н+] < 10-7 моль/л

Для характеристики сред растворов удобно использовать так называемый водородный показатель рН (пэ-аш), введенный датским химиком Серенсеном.

Водородным показателем рН называется отрицательный десятичный логарифм концентрации ионов водорода.Чем рН больше 7, тем больше щелочность раствори. Наглядно зависимость между концентрацией ионов водорода, значением рН с реакцией среды раствора показана на схеме:

Существуют различные методы измерения рН. Качественно тип среды и рН водных растворов электролитов определяют с помощью индикаторов — веществ, которые обратимо изменяют свой цвет в зависимости от среды растворов, то есть рН растворов. На практике, кик вы знаете. дли зтого применяют такие индикаторы, как лакмус, метиловый оранжевый, фенолфталеин, универсальный.

Водородный показатель имеет большое значение в химических и биологических процессах, так как в зависимости от типа среды эти процессы могут протекать с разными скоростями и в разных направлениях.

Измерение рН крови или желудочного сока является диагностическим тестом в медицине.

Свойства растворов электролитов

Свойства растворов слабых электролитов обусловлены и молекулами, и ионами, образовавшимися в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул СН3СООН. кислый вкус и изменение окраски индикаторов связаны с наличием в растворе ионов Н*.
Свойства растворов сильных электролитов определяются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие, как кислый вкус, изменение окраски индикаторов и др.. обусловлены наличием в их растворах катионов водорода Н~ (точнее ионов Н30+).

Общие свойства щелочей, такие, как мылкость на ощупь, изменение окраски индикаторов и др.

связаны с присутствием в их растворах гидроксид-ионов ОН-, а свойства солей — с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Как вы знаете, большая скорость многих химических реакций в растворах электролитов объясняется тем. что они протекают не между молекулами, а между ионами.

Реакции, протекающие между ионами, называют ионными реакциями.

Реакции ионного обмена в водных растворах могут протекать:

1) необратимо, до конца;2) обратимо, то есть протекать одновременно в двух противоположных направлениях.

Как вам известно, реакции обмена между сильными электролитами в растворах протекают до конца или практически необратимы, когда ноны, соединяясь друг с другом, образуют вещества:

а) нерастворимые;б) малодиссоциирующие (слабые электролиты);в) газообразные.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.Например:

СН3СО0Н + КОН      СН3СО0К + H2O

слабый           слабыйэлектролит    электролит

Если исходные вещества — сильные электролиты, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при смешивании растворов образуется смесь ионов.

1. Какие вещества относят к электролитам, а какие — к неэлектролитам ?
2. Какие из следующих жидкостей проводит электрический ток: этиловый спирт, водный раствор глюкозы, водный раствор натрия, раствор кислорода в воде, водный раствор карбоната натрия, расплав гидроксида калия? Ответ объясните.

3*. Заполните следующую таблицу:

9. Определите возможность протекания реакций обмена между водными растворами веществ:

а) сульфата калия и гилроксилн бария;б) карбонита натрия и хлорида кальция;  нитрита меди(ІІ) и сульфата железа(ІІ);г) пцроксцяа натрия и серной кислоты;д) сульфита калия и азотной кислоты;

е) нитрата алюминия и хлорида калия.

Составьте уравнения возможных реакций в молекулярной, полной и сокращенной ионных формах.

Лабораторные опыты

Сегодняшний наш урок был посвящен изучению электролитической диссоциации, на котором вы узнали, что так называют распад нейтральных молекул вещества на положительные и отрицательные ионы, который происходит под воздействием растворителя.

Кроме этого, вам уже известно, что в зависимости от электрических свойств, жидкости делятся на две группы:

А теперь давайте проведем опыты и на практике проверим некоторые вещества на электрическую проводимость. А чтобы понять, проводит ли взятое нами вещество электрический ток, необходимо в него поместить электроды.

И в том случае, если взятое нами вещество проводит электрический ток, то мы с вами будем наблюдать процесс, при котором происходит замыкание цепи и лампочка при этом загорается. А если же взятое нами вещество не обладает электропроводностью, то в этом случае цепь по-прежнему останется разомкнутой и естественно, что мы не сможем наблюдать, как загорится лампочка.

А теперь приступим к испытанию веществ на его электропроводимость:

• Первое, что мы с вами сделаем, так это насыпаем в чашку Петри кристаллический хлорид натрия NaCl, а нам уже известно, что это простая поваренная соль, и дальше подносим к электродам. Теперь внимательно смотрим и видим, что в данном случае лампочка не загорается. Отсюда мы делаем вывод, что поваренная соль электрический ток не проводит.

• Второе, что мы с вами сделаем, так это возьмем какое-то органическое вещество и проверим его на наличие электропроводимости. Пускай этим органическим веществом будет, например, сахар.

Проделываем наш опыт заново и опять видим, что лампочка все также не горит.

Какой мы можем сделать вывод из этого опыта? А вывод будет такой, что твердые вещества, также не способны проводить электрический ток.

• На третьем опыте мы с вами попробуем проверить электропроводность на дистиллированной воде и узнаем, является ли она электролитом? И опять мы наблюдаем, что лампочка все также не горит.

Почему так происходит? А все очень просто, оказывается, что в дистиллированной воде ионов совсем мизерное количество и за счет этого вода имеет очень низкую электропроводность.

Поэтому делаем вывод, что дистиллированная вода, является довольно слабым электролитом.

• Ну и следующее, что мы сделаем, так это проверим на электропроводимость растворы солей, щелочей, кислот. Проводя опыт с раствором гидроксида натрия, мы наблюдаем, как загорается лампочка.

И отсюда делаем вывод, что гидроксида натрия обладает электропроводностью. При испытании на электропроводность раствора поваренной соли, лампочка также зажглась. Тот же эффект мы получим и проделывая опыт с раствором соляной кислоты HCl.

Как видите, все испытания, проводимые с растворами доказали, что они являются электролитами.

Теперь попробуем подвести итог наших испытаний и сделать выводы о том, какие вещества являются электролитами, а какие электрический ток не проводят. После проведенных опытов мы можем уверенно утверждать, что твердые вещества не являются электролитами и поэтому неспособны проводить электрический ток.

А вот растворы солей, щёлочей, кислот способны проводить электрический ток, так как являются электролитами. Но, также следует запомнить, что не все растворы являются электропроводными, так как у некоторых отсутствуют заряжение частицы и естественно, что такие растворы электролитами не могут быть.

Домашнее задание

На уроке вы наблюдали за проведением опытов, с помощью которых велись испытания на электропроводность некоторых веществ. Постарайтесь вспомнить все, что вы наблюдали на уроке, и заполните таблицу, записав результаты опытов по электрической проводимости указанных веществ:

Источник: http://edufuture.biz/index.php?title=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B4%D0%B8%D1%81%D1%81%D0%BE%D1%86%D0%B8%D0%B0%D1%86%D0%B8%D1%8F_%28%D0%A5%D0%B8%D0%BC%D0%B8%D1%8F_11_%D0%BA%D0%BB%D0%B0%D1%81%D1%81%29

Тема №33 «Электролитическая диссоциация электролитов в водных растворах и реакции ионного обмена.» | CHEM-MIND.com

Понятие о процессе электролитической диссоциации

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других — нет.

Вещества, растворы которых проводят электрический ток, называются электролитами.

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами. Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов, которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией.

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И.

Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е.

«одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения. В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.

Схема электролитической диссоциации хлорида натрия на гидратированные ионы

Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.

Схема электролитической диссоциации полярной молекулы хлороводорода на гидратированные ионы

Свойства гидратированных ионов отличаются от свойств негидратированных.

Например, негидрати­рованный ион меди Cu2+ — белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu2+ • nH2O.

Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации, ко­торая обозначается греческой буквой а («альфа»).

Степень диссоциации — это отношение числа частиц, распавшихся на ионы (Ng), к общему числу растворенных частиц (Np).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы.

Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита.

Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные и слабые электролиты

Сильные электролиты — это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H2SO4, HCl, HNO3;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты — это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты — H2S, H2CO3, HNO2;

2) водный раствор аммиака NH3 • H2O;

3) вода;

4) некоторые соли.

Реакции ионного обмена

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH3COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H+.

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H3O+).

Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др.

связаны с присутствием в их рас­творах гидроксид-ионов OH—, а свойства солей — с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами. Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями, а уравнения этих реак­ций — ионными уравнениями.

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо, до конца.

2. Обратимо, то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима, т. к. один из ее про­дуктов — нерастворимое вещество.

Реакция нейтрализации необратима, т. к. об­разуется малодиссоциирующее вещество — вода.

Реакция необратима, т. к. образуется газ CO2 и малодиссоциирующее вещество — вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита — H2O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества — сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Шпаргалка

Справочный материал для прохождения тестирования:

Таблица Менделеева Таблица растворимости

Источник: https://www.chem-mind.com/2017/04/23/%D1%82%D0%B5%D0%BC%D0%B0-%E2%84%9633-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D0%B4%D0%B8%D1%81%D1%81%D0%BE%D1%86%D0%B8%D0%B0%D1%86/

ovdmitjb

Add comment